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EXECUTIVE SUMMARY 

Arterial roads constitute the majority of the centerline miles of the Florida State Highway 

System. Severe injury involvements on these roads account for a quarter of the total severe 

injuries reported statewide. This research focuses on driver injury severity analysis of statewide 

high-speed multilane arterials using crash data for the years 2002 to 2004. The first goal is to test 

different ways of analyzing crash data (by road entity and crash types) and find the best method 

of driver injury severity analysis. A second goal is to find driver-, vehicle-, road- and 

environment-related factors that contribute to severe involvements on multilane arterials. 

Exploratory analysis using one year of crash data (2004) using binary logit regression was used 

to measure the risk of driver severe injury given that a crash occurs. A preliminary list of 

significant factors was obtained.  

A massive data preparation effort was undertaken and a random sample of multivehicle 

crashes was selected for final analysis. The final injury severity analysis consisted of six road 

entity models and twenty crash type models. The data preparation and sampling was successful 

in allowing a robust dataset. The overall model was a good candidate for the analysis of driver 

injury severity on high-speed multilane roads. Driver injury severity resulting from angle and left 

turn crashes were best modeled by separate unsignalized intersection crash analysis. Injury 

severity from rear-end and fixed object crashes was best modeled by combined analysis of pure 

segment and unsignalized intersection crashes. 

The most important contributing factors found in the overall analysis included driver-

related variables such as age, gender, seat belt use, at-fault driver, physical defects and speeding. 

Crash and vehicle-related contributing factors included driver ejection, collision type (harmful 
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event), contributing cause, type of vehicle and off-roadway crash. Multivehicle crashes and 

interactions with intersection and off road crashes were also significant. The most significant 

roadway-related variables included speed limit, adt per lane, access class, lane width, roadway 

curve, sidewalk width, non-high mast lighting density, type of friction course and skid resistance.   

The overall model had a very good fit but some misspecification symptoms appeared due 

to major differences in road entities and crash types by land use. Two additional models of 

crashes for urban and rural areas were successfully developed. The land use models’ goodness of 

fit was substantially better than any other combination by road entity or the overall model. Their 

coefficients were substantially robust and their values agreed with scientific or empirical 

principles. Additional research is needed to prove these results for crash type models found most 

reliable by this investigation. A framework for injury severity analysis and safety improvement 

guidelines based on the results is presented. Additional integration of road characteristics 

(especially intersection) data is recommended for future research. Also, the use of statistical 

methods that account for correlation among crashes and locations are suggested for use in future 

research.  
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Disclaimer 

The opinions, findings, and conclusions expressed in this publication are those of the authors and 

not necessarily those of the State of Florida Department of Transportation.  
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CHAPTER 1.  INTRODUCTION 

1.1 Florida State Road Network 

The Florida State Highway System (SHS) consists of a complex network of more than 

9,700 centerline miles of roads that serve different purposes. This is integrated to a broad inter 

modal system to provide for the transportation needs of the state residents and visitors. As the 

main statewide transportation network, it carries a significant amount of vehicular traffic. The 

arterial roads are an important component of this system, as shown in Table 1-1.  More than 95% 

of the centerline miles of active roads on the SHS serve as arterials. When excluding interstates 

and expressways, a majority (78.1%) of the SHS roads serve as arterials. When comparing 

centerline miles totals, the rural portion (43.3%) are higher than the urban (34.5%). However, the 

lane miles shown in Table 1-2, page 2, show that the built urban capacity (41.1% of the total 

SHS) is significant higher than the rural capacity (31.9% of the total SHS). These statistics show 

the importance of the arterials in the SHS and the high degree of urbanized development in the 

state. 
 

Table 1-1: Distribution of Centerline Miles for Active Roads on the State Highway System (Source: FDOT, 
2008) 

Functional Classification Centerline miles Average 
Percent 2002 2003 2004 

R
ur

al
 

Prin. Arterial - Interstate, toll 1,199 1,199 1,068 9.6% 
Principal Arterial- Other 3,288 3,218 2,821 25.8% 
Minor Arterial 2,140 2,208 2,062 17.7% 
Major Collector 424 424 436 3.6% 
Minor Collector 9 9 0 0.1% 

U
rb

an
 Prin. Arterial - Interstate, toll 872 872 1,003 7.6% 

Principal Arterial- Other 2,561 2,530 3,009 22.4% 
Minor Arterial 1,422 1,454 1,509 12.1% 
Total Collector 144 138 129 1.1% 

Total Active on SHS 12,058 12,051 12,037 100.0% 
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Table 1-2: Distribution of Lane Miles for Active Roads on the State Highway System (Source: FDOT, 2008) 

Functional Classification Lane miles Average 
Percent 2002 2003 2004 

R
ur

al
 

Prin. Arterial - Interstate, toll 5,195 5,227 4,672 1232.5% 
Principal Arterial - Other 9,016 8,928 7,715 2095.3% 
Minor Arterial 4,485 4,646 4,300 1096.5% 
Major Collector 877 857 879 213.3% 
Minor Collector 19 19 0 3.1% 

U
rb

an
 Prin. Arterial - Interstate, toll 4,510 4,547 5,201 1163.6% 

Principal Arterial - Other 11,235 11,264 13,027 2899.1% 
Minor Arterial 4,855 4,989 5,004 1212.0% 
Total Collector 361 352 323 84.6% 

Total Active on SHS 40,552 40,828 41,120 10000.0% 
 

 

The Florida Department of Transportation (FDOT) has engaged in initiatives aimed at 

improving the balance between access and mobility of the existing and new arterial roads. Two 

such initiatives are the access management and the corridor management programs, which 

improve existing road design features to achieve their objectives. The published results suggest 

that these programs have also been successful at improving safety based on research results 

(FDOT, 2007 and Williams, 2004). The FDOT is currently investigating how to apply the 

corridor concept to safety evaluations of high-speed multilane arterial corridors. Nationwide, 

different safe corridor initiatives have been started in states such as New Jersey, Washington, 

Virginia and Ohio. The concept of corridor safety is an attempt to analyze crash experience along 

a corridor considering the entire roadway as one entity rather than dividing the crashes into the 

traditional road entities (segments and intersections) and treat them as isolated locations. The 

traffic behavior and close proximity of some of these road entities on high-speed multilane 

arterials may affect the crash experience at neighboring locations.  

The importance of preventing severe crashes has been acknowledged by government 

officials. The first of the Safety Recommendations in AASHTO’s Surface Transportation Policy 
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Recommendations for the National Surface Transportation Policy and Revenue Study 

Commission states (AASHTO, 2007): “Establish a presidential commission to assist in the 

development of a national strategic highway safety plan designed to drive down fatal and 

disabling injuries on the nation’s highways.” Following a similar policy, Florida’s Strategic 

Highway Safety Plan (SHSP) goal states (FDOT, 2006): “To improve the safety of Florida’s 

surface transportation system by achieving a five percent annual reduction in the rate of fatalities 

and serious injuries beginning in 2007.” This underscores the importance of analyzing severe 

crashes as a group, as opposed to fatal crashes only. 
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Figure 1-1: Injury Severity Rates per Vehicle Miles Traveled from 1987-2006 (Source: FDHSMV, 2006)  

 

In Florida there has been progress in achieving crash rates reductions in both injury and 

fatal crashes, as shown in Figure 1-1. However, since 2001 the rates of non-fatal injuries (levels 

2-4 in the Florida injury scale) kept a nearly constant slope while the fatality rates have a 
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significantly less pronounced downward trend. Perhaps some of these earlier positive effects are 

being negated by increased development around arterial corridors in rural areas and riskier driver 

behavior in the case of the fatalities, among other factors. The difference between the fatal and 

disabling crash injury outcomes for a given crash will largely depend on driver characteristics 

when controlling for other factors. The importance of considering the contributing factors of 

severe crashes in order to prevent fatal injuries is paramount. 

 

Table 1-3: Difference from Previous Year in Involvement Rates per Vehicle Miles Traveled from 2002-2006 
(Source: FDHSMV, 2006) 

Year 
Non- Fatal Injury Rate 
(per 100 million vmt) 

Percent 
Difference 

Fatality Rate 
(per 100 MVM) 

Difference with 
previous year 

2002 128.504 -6.32% 1.759011 -0.15% 
2003 119.3905 -7.09% 1.712436 -2.65% 
2004 115.4889 -3.27% 1.655636 -3.32% 
2005 116.3981 0.79% 1.757939 6.18% 
2006 105.4622 -9.40% 1.651266 -6.07% 
Average -5.06%   -1.20% 

 

 

To consider the trends in recent years, Table 1-3 shows that the average percent 

difference for the last five years was -5.06 for non-fatal injuries vs. -1.20 for fatalities. 

Improvements in vehicles and roads may have had some impact on the reduction of injuries; 

however, there is not a clear trend of reductions in the last five years. Additional measures are 

required in order to achieve the goal of the 2006 SHSP in a regular basis, especially on the fatal 

injuries. The non-fatal injury rate groups serious and non-serious injuries, which does not show 

the individual trend of serious injuries. Analysis can be improved by grouping serious 

(incapacitating) and fatal injury because similar crash circumstances can lead to either injury 
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outcome. This study focuses on a road user group to which the severe injuries can be directly 

compared to the vehicular traffic, the drivers. 

 

1.2 Driver Severe Injuries in Florida 

Driver involvements have been regarded as an important indicator of the vehicular crash 

outcomes. The analysis shown in Table 1-4 compares the total severe injuries reported and the 

driver injuries extracted from the FDHSMV crash database. The drivers (including bicyclists and 

motorcyclists) represent more than 65% of the total severe injuries, thus their importance in 

considering contributing factors for severe injury outcomes. The importance of the arterial 

corridors in the safety picture can be better understood by comparing all of the driver 

involvements vs. those occurring at high-speed multilane arterials. It can be seen that the percent 

of severe injury involvements are slightly higher for these arterial corridors (see Table 1-5, page 

6). If we consider that minor crash data are underreported in this crash database (Abdel-Aty and 

Keller, 2005) the true proportion may not be easily obtainable, but it should follow a similar 

trend for most road types. 

 

Table 1-4: Severe (Incapacitating and Fatal) Injuries from 2004-2006 (*Source: FDHSMV, 2006) 

Year 
Total severe 

injuries* 
Driver severe 

injuries 
Percent 
Driver 

2002 33,664 22,194 65.93% 
2003 32,771 21,800 66.52% 
2004 32,792 21,784 66.43% 

 

 

Table 1-5: Severe (Incapacitating and Fatal) Injuries Sustained by Drivers from 2004-2006 

All involvements Involvements on high-speed multilane roads 
Year Non- Severe Total Percent Year Non- Severe Total Percent 
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severe Severe 
2002 383033 22194 405227 5.48% 
2003 375171 21800 396971 5.49% 
2004 395861 21784 417645 5.22% 
Total 1154065 65778 1219843 5.39% 

 

severe Severe 
2002 93626 5491 99117 5.54% 
2003 88924 5218 94142 5.54% 
2004 92593 5138 97731 5.26% 

Total 275143 15847 290990 5.45% 
 

 

 

Another measure of the safety performance of state roads classified as arterial (non 

limited access) in Florida can be obtained by comparing the driver severe injuries occurring on 

these corridors in relation to the portion of the total public road composition in the state. Severe 

driver injuries at high-speed multilane corridors (15,847 out of 65,778) represent 19.41% of the 

total severe driver injuries in all of Florida’s public roads (see Table 1-5). This a significant 

number in itself, justifying special analysis of the characteristics of severe injury crashes in order 

to reduce the rates of severe injury. This need is more compelling when we consider the fact that 

the types of road targeted in this study represent less than 8% of the total centerline miles of all 

the public roads in Florida (FDOT, 2008). The impact of improving safety conditions in these 

types of roads has a great potential in improving the safety performance of Florida’s road 

network. 
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Table 1-6: Severe (Incapacitating and Fatal) Injury Rates for Drivers from 2002-2004 

All driver involvements in Florida 

Year 
Annual vmt 
(millions) 

Severe 
injuries 

Severe injury rate (per 
100 million vmt) 

Difference with 
previous year 

2002 178,681 22,194 12.42 -- 
2003 185,511 21,800 11.75 -5.4% 
2004 196,444 21,784 11.09 -5.6% 

 

Drivers on state arterials (non limited access) 

Year 
Annual vmt 
(millions) 

Severe 
injuries 

Severe injury rate (per 
100 million vmt) 

Difference with 
previous year 

2002 58,279 5,491 9.42 -- 
2003 59,648 5,218 8.75 -7.2% 
2004 60,328 5,138 8.52 -2.6% 

 

 

 

In terms of severe injury rates, drivers have experienced lower rates in the recent years, 

but these rates have not been reduced consistently on the state arterial corridors (see Table 1-6). 

Even when the injury rate is lower than the overall rate, this analysis is focused on the potential 

for improvement, which is certainly higher for severe crashes than for fatal crashes only (refer to 

Table 1-3, page 4). These statistics serve to illustrate how the severe injury group analysis helps 

to better understand the safety performance of the highway network. Additional analysis by road 

entities and crash types will improve the understanding of injury severity outcomes at high-speed 

multilane roads. 

 

1.3 Research Objectives 

This research focuses on a driver injury severity analysis of statewide high-speed 

multilane arterials using crash data for the years 2002 to 2004. These were defined as non-

limited access roads with four or more lanes and speed limits greater than or equal to 40 mph 

under state jurisdiction. An additional effort was made to merge data from different databases to 
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include driver, crash, road and environmental factors not usually found in the crash report. 

Adequate sample size was found to concentrate the statistical modeling on the most severe 

(incapacitating injury and fatal injury) crashes.  Previous research has shown that the accuracy of 

crash report information increases with the injury level (Hauer and Hakkert, 1988; Elvik and 

Mysen, 1999). This analysis, due to its systematic nature, will rely almost exclusively on the 

crash database information and therefore the most accurate data should be pursued.  

The first goal of this work is to test different ways of analyzing crash data and find the 

best combination of road entities applicable to driver injury severity analysis of high-speed 

multilane arterials. The second goal is to find a group of driver, vehicle, road and environmental 

factors that contribute to the occurrence of severe crash involvements on multilane arterials in 

Florida. These objectives are to be achieved considering crash risk effects on the arterial road 

network as a whole. In order to achieve this, a series of steps were designed as detailed in 

Section 1.4. 

 

1.4 Research Steps 

A series of steps were taken to find the factors affecting severe crash involvements 

related to Florida’s high-speed multilane arterials. The results of a series of severity analyses are 

used as a guide to better understand the nature of the complex relationships between driver 

behavior, road features and environmental characteristics and severe crashes on the particular 

group of roads under study. By selecting the driver injury severity analysis as the fundamental 

response, we have some major benefits. First, severity analysis has the distinct advantage that by 

looking at the driver involvements we capture very important crash injury contributing factors 
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not available in aggregate frequency analysis. Second, driver involvement injury severity 

provides an unbiased measure for injury exposure for crashes involving at least one vehicle, i.e. 

each vehicle has one driver. Third, driver-related factors that affect severe injury crashes have 

been recognized to have a great influence in the occurrence of crashes. 

The research included two datasets of analysis (see Figure 1-2, page 10): an exploratory 

analysis using only one year of crash data and the final analysis using three years of crash data. 

The regression analysis for both datasets followed a data subset methodology explained in 

Section 3.6. The results of the exploratory analysis were used in an improved data preparation 

and variable setup for a final analysis using three years of crash data. In both, the preliminary 

analyses consisted of bivariate statistical analysis between categorical, continuous variables and 

the driver injury severity variable. The regression analysis included several driver injury severity 

models in one or two main categories: road entity and crash type. The analysis of the results 

included a comparison of the models as well as an examination of the effects of the contributing 

factors for each model. With this process, the main research goals were achieved. 
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Figure 1-2: Overview of Research Steps 
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The scope of work is not all inclusive in regards to the marginal contributions of the 

different factors to injury severity of different drivers involved in a crash. The main objectives of 

this research are accomplished by considering all the complete records available within the two 

main clusters of drivers. This issue will be addressed in the next chapters. The results of this 

research will serve as a foundation for a more advanced systematic analysis of high-speed 

arterial corridors that is being undertaken for the first time using data from the state of Florida. 

This research contributes to the body of knowledge by modeling driver injury severity for a 

sample across a large jurisdiction. Also by comparing different crash types and road entities, the 

comparison of the reliability of the models are useful in determining future modeling strategies. 
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CHAPTER 2.  LITERATURE REVIEW 

2.1 Driver Injury Severity Analysis 

2.1.1 Introduction 

The modeling of traffic crash injury severity using statistical techniques has been 

employed as a powerful means to assess road safety conditions. Several situations have 

warranted the use of this analysis in the past and continue to do so. Some of the uses for injury 

severity analysis include: 

• For a before and after crash severity analysis in order to measure the effectiveness of 

certain countermeasure in reducing crash severity. 

• For conducting a multivariate statistical analysis of crash injury severity based on 

historical data in order to find contributing factors for certain injury outcomes. 

• As part of a systematic study to assess the safety conditions in a large road network. 

• When researchers aim to investigate the relationships between driver (and/or vehicle) 

characteristics and the crash outcomes. 

Driver injury severity analysis is a commonly used method to find contributing factors to severe 

crashes and covers a broad range of crash situations. In Florida, motorcyclists and bicyclists are 

also considered drivers in the crash reports, thus including groups that have a higher risk of 

severe crashes. There are challenges when examining different groups in a statistical model. To 

consider drivers as the unit of analysis has several advantages, such as:  
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• Severity analysis has the distinct advantage that by looking at the driver involvements 

we capture very important crash injury contributing factors not available in aggregate 

frequency analysis. 

• Driver involvement injury severity provides an unbiased measure for injury exposure 

for crashes involving at least one vehicle, i.e. vehicles have each one driver. 

• Driver-related factors that affect severe injury crashes have been recognized to have a 

great influence in the occurrence of crashes. 

2.1.2 Definition of Injury Severity Levels 

The most commonly used means by police officers to classify the injury severity of 

persons resulting from a traffic crash is a five level scale, which may vary in definition by 

jurisdiction. Other injury scales are used in the medical field, but are not currently available in 

the crash reports used in this analysis. Most state jurisdictions in the United States use the 

KABC0 five level injury scale: fatal (K), incapacitating injury (A), non-incapacitating (B), 

possible injury (C), no injury (0). In Florida, an equivalent scale is used with numbers instead of 

letters. The crash reports’ information collected from the FDHSMV traffic crash database 

(FDHSMV, 2004) follows a five-level injury severity scale, and is defined/numbered as follows: 

1) No injury – Indicates there is [no] reason to believe any person received bodily harm 

from the crash. (Also known as property damage only or PDO) 

2) Possible injury – No visible signs of injury but complaint of pain or momentary 

unconsciousness. 

3) Non-incapacitating Evident Injury – Visible injuries from the crash such as bruises, 

abrasions, limping, etc. 
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4) Incapacitating injury – Any visible signs of injury from the crash and person(s) had to 

be carried from the scene. 

5) Fatal Injury – An injury sustained in a crash [that] results in a death within 30 days of 

the crash. 

Injury severity analysis has been a mainstay of recent traffic safety research literature due 

to its intrinsic value to predict factors that influence the main crash outcome (personal injury). 

The main purpose of this analysis is to describe the relationships that affect crashes with 

different levels of injury. There are different strategies that can be used to fulfill this goal. One of 

the strategies is to compute the relative (or conditional) probability of a severe injury given that a 

crash occurs. The advantage of this type of research is the ease of computation and interpretation 

of results compared to other methods. In this research the response variable is whether the driver 

suffered a severe crash (defined as injury levels 4 and 5) given that a crash occurs. A review of 

the previous studies involving injury severity analysis follows. 

 

2.2 Past Studies Related to Injury Severity Analysis 

2.2.1 Relationships between Driver, Vehicle, Traffic and Road Factors and Severity 

An exhaustive literature review showed how the injury severity (crash outcome) analysis 

has evolved, from a tool used to establish relationships between driver factors and the severity of 

a given crash to a more comprehensive traffic safety analysis tool used for a variety of purposes. 

Some of the most important objectives that are mentioned next include predicting certain driver’s 

group risk of severe crashes, find certain roadway and environmental characteristics that can be 
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linked to higher crash severity, compare the risk of severe crashes under certain conditions in 

different geographical regions, and to assess the tradeoffs of reducing certain crash types, which 

tend to be severe, on the overall crash risk. Many statistical analysis techniques have been 

employed, usually a type of parametric regression. Also, research in other fields has allowed 

development of techniques to compare the reliability of different statistical analysis techniques.  

Kim et al. (1995) found a relationship between driver characteristics, behavior, vehicles 

types, crash types, and driver injury severity using crash data in the state of Hawaii during the 

year 1990. The injury severity log-linear models were developed categorizing by three levels of 

crash types: head-on, rollover and others. The injury severity response variable was collapsed 

into four levels: none, possible or non-incapacitating, incapacitating, and fatal. After computing 

conditional odds derived from a log-linear model, they found that driver behavior (alcohol or 

drug use and lack of seat belt use) greatly increase the odds of more severe injuries. Driver errors 

were found to have a small effect, while driver characteristics (age and gender) were mostly 

insignificant. The main contribution of this and other early work was to demonstrate that there is 

a complex relationship between driver characteristics, behavior, crash type and injury severity 

(see Figure 2-1, page 16).  

A follow-up study by Richardson et al. (1996) used crash data from Hawaii for the years 

1991-1992; they examined the relationships and possible interactions between driver’s age, 

gender, crash type and vehicle type. First, by using categorical data analysis, which guided the 

development of log-linear models main effect relationships, two- and three-way interactions 

were found to be significant. The authors found that young drivers have much greater frequency 

of rollovers and at-fault in rear-end and head-on crashes. Meanwhile, older drivers have much 

higher frequency of being rear-ended or side-swiped. These findings showed a tendency of 
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different driver groups to be involved in different crash types, suggesting different abilities and 

behaviors. In addition, it was noted that the reported seat belt use of 97% in crash reports was 

larger than the observed rate of 85%. Due to the mandatory seat belt law in Hawaii, drivers are 

motivated to report to the police officer that they were using seat belts at the time of the crash. 

However, for critically injured or fatal crashes the seat belt use rate drops (below 50% for killed). 

This apparent over reporting of seat belt use in the lower severity crashes may falsely increase 

the effectiveness of seat belt use in the model. The authors conducted a sensitivity analysis and 

found a small effect compared to the total differences in rates across the injury categories. 

 

 
Figure 2-1: Complete Structural Model for Driver Injury Severity (Source: Kim et al., 1995) 

 

By using categorical analysis techniques, including log-linear models, Abdel-Aty et al. 

(1998) found a broader set of relationships between driver behavior, crash types, traffic, road 

characteristics and driver injury severity among various driver age groups. Using Florida crash 

data for the years 1994-1995, four hierarchical models with up to two-way interactions were 
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developed. After computing odd multipliers, the results indicated significant relationships 

between the driver age and adt, injury severity, manner of collision, speed, alcohol involvement 

and roadway character.  The model that included the age, injury severity and adt factors 

suggested that injury severity is related to age and that those old and very old drivers are more 

likely to be killed in crashes.  

When modeling injury severity two main units of analysis are utilized. An aggregate unit 

of analysis is the crash severity defined as the most serious severity of any of the persons 

involved in this event. This type of analysis is most useful for larger jurisdictions and when the 

researcher is more interested in aggregate measures, such as traffic, road types, and 

environmental factors that contribute to serious crashes or it could also be applied when 

analyzing single vehicle crashes only. On the other hand, when the researcher whishes to find 

other important contributing factors related to each driver and vehicle involved in the crash, the 

person(s) involved becomes the unit of analysis. This disaggregated method is also called 

analysis of involvements and while more challenging; it provides additional information not 

available in crash severity analysis. An overview of both methods is presented in the next two 

sections. 

2.2.2 Crash Injury Severity Regression Analysis 

Using data from a rural freeway in Washington State, Shankar et al. (1996) found 

significant effects of environmental conditions, highway design, accident type, driver 

characteristics and vehicle attributes on crash severity. Crash data from a 61 km study section of 

a rural interstate during a five-year period (1988-1993) included 1505 single vehicle crashes used 

in the analysis. A nested logit formulation was used to determine crash severity risk given that a 
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crash occurred. Some of the most important effects found significant were crash types, speeding, 

restraint use, occupant ejection, driver gender, roadway curves, weather (snow), vehicle-mass 

(vehicle type) difference and off-road crash location.  Interactions were also found between age 

and sobriety, curves and sobriety, nighttime and icy pavement, fixed object and icy pavement 

and fixed object and curves. It was noted that the uncertainty about restraint use for less severe 

crashes has a minimal significance in the models, while more severe crashes reports have more 

reliable restraint use information. Also, underreporting of the less severe crashes may have a 

small effect on the model, but the coefficients should continue to be unbiased.  

One of the few studies that focused exclusively on environmental effects investigated the 

major contributing factors to crash severity for one road (State Route 3) in Washington (Lee and 

Mannering, 2002). This road had rural and urban sections, although model information was 

shown for the rural sections only. A nested logit model of the severity of 489 run-off road 

crashes was developed. The five severity levels were combined into three: no evident injury, 

evident injury and disabling injury/fatality. The results of this model and its marginal effects 

indicated that the most important factors affecting crash severity included wet road, high-speed 

road, guardrail location, speeding indicator, asphalt shoulder and weekend indicators. Although 

the data for this study are limited and thus no general conclusions could be made, some of these 

environmental factors have been found significant in broader studies. A contribution of this study 

was the application of the severity models and the marginal effects of the contributing factors as 

an effective way to compare and analyze the effect of possible countermeasures to run-off road 

crashes. 

A study on single vehicle crashes in an urban area (Hong Kong) investigated the 

likelihood of fatal or serious injury crashes vs. crashes in which no person involved sustained 
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fatal or serious injury (Yau, 2004). Logistic regression was the statistical tool chosen due to the 

binary nature of the response variable. Statistical independence test (using contingency tables) 

and the Cramer’s V measure of association were used to guide the variable selection process. 

The analysis and modeling was developed by type of vehicle (private, commercial, motorcycle) 

and the risk factors were compared. For private vehicles, district jurisdiction, gender of driver, 

age of vehicle, time of day and street light conditions were found significant factors. For 

commercial (goods) vehicles seat-belt usage and weekday occurrence were the only two 

significant factors, while for motorcycles age of vehicle, weekday and time of day were found to 

be significant. The author also explained that modeling by vehicle type has the advantage of 

reducing the heterogeneity in the data, while a disadvantage was the reduction in sample size 

(less than N=1,000 for each model). To balance the loss in statistical power, a 10% level of 

significance (entry and exit) was used in the stepwise method. 

An unusual (albeit valid) application of crash injury severity analysis was developed by 

Obeng (2007). Data for a 45 month period from January 2000 to September 2003 for 303 

signalized intersections in the city of Greensboro, North Carolina were collected and merged for 

the analysis. This included intersection characteristics and crash data that were analyzed month 

by month for each intersection. Months in which the intersection crash totals equal zero were 

excluded. After the data preparation process, an unbalanced panel data (in terms of months and 

intersections) resulted in 4,767 crash observations. The dependent variable (possible injury vs. 

any other injury) was chosen out of necessity of the local jurisdiction: about 85% of the crashes 

with injuries were classified as possible injuries. This distinction is most useful for the purposes 

of this research. A binomial logit model was developed and resulted in a good discrimination 

(85.17% percent correct). Significant factors included driver gender, occupant, number of 
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vehicles involved, driver condition, airbag use, vehicle type, residential land use, sidewalk, 

amber time, speed limit, a month indicator and interactions of the log adt/lane with sidewalk and 

solid median with pedestrian signal. This and other models involving signalized intersections 

found a variety of local intersection characteristics significant to the injury risk. 

2.2.3 Involved Person Injury Severity Regression Analysis 

On of the early comprehensive studies of road crash victims used data from the New 

South Wales, Australia Road and Traffic Authority (O’Donnell and Connor, 1996). A total of 

18,069 motor vehicle occupant involvements occurred during 1991 (representing a census) were 

used in the analysis. A total of 11 road user attributes were introduced for model fitting. Two 

modeling types were developed: ordered probit (normal) and ordered logit (logistic) due to the 

unknown nature of the error distribution. Four injury levels were included in the response: 

uninjured (also labeled as non-treated injury), treated injury (by a doctor, nurse, or paramedic), 

admitted injury (hospital), and death (within 30 days and attributed to the crash). The continuous 

variables age of occupant, speed of vehicle, age of vehicle and time of crash were scaled dividing 

by 100. The variable selection process utilized the Schwarz Bayesian Information Criterion 

(SBIC) best subsets method. Significant factors included age of the occupant, vehicle speed, 

seating position, blood alcohol level, age of vehicle, vehicle type, vehicle make, seat belt usage, 

and type of collision  

A study of age and gender as predictors of driver and front seat passenger injury severity 

(Mercier et al., 1997) used crash data from Iowa between 1986 and 1993. The data selected for 

analysis included head-on crashes on high-speed (55 to 65 mph) roads with fatal, major, minor 

injuries of the driver and front right seat occupant (2,171 injury observations in total). The main 
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objective of the research was to find whether age and gender influenced the severity of the head-

on collisions. Results of logistic regression analysis indicated that four separate factors (age, 

gender, safety equipment, and position in the vehicle) with a total of 14 individual and 

interactive variables were significant. When the population was divided by gender it was found 

that age remained significant while seat belts were more beneficial for men and air bags seemed 

to be more beneficial for women. However, the air bags deployed sample (35 observations) was 

too small to make a strong conclusion. 

To describe the factors that influence the injury severity of passenger vehicle occupants 

in car-truck rear-end collisions on divided roads, crash data from North Carolina for the years 

1993-1995 were used (Duncan et al., 1998). To have a better dataset for the models, this study 

focused on passenger car occupant injuries in two-vehicle car-truck rear-end crashes on divided 

highways. The well known five crash levels (KABC0) were employed in disaggregate models 

for 562 crashes involving 1,175 passenger car occupants. Two ordered probit models were 

developed to capture the qualitative differences between different crash severities. The first 

model only included main variable effects and no interactions. The second model included 

interactions among the main effect variables. It was found that the model with interaction effects 

such as cars being struck in the rear with high speed differentials performed better than the main 

effects counterpart. Crash event, driver, vehicular, roadway and environmental factors were 

found significant in these models. 

Following the results of an earlier study, Mercier et al. (1999) examined the effect of age 

on injury severity, this time for broadside and angle collisions on rural highways. The sample 

selected consisted of 4,261 involvements in Iowa from 1986 to 1993. The study focused on 

driver-front passenger involvements on high-speed (55-65 mph) highways with different models 
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for each point of impact relative to the vehicle occupants. Age was a significant factor for all of 

the models, while the use of lap and shoulder restraints was significant in reducing injury 

severity. The occupant position relative to the point of impact was not significant by itself, but as 

an interaction factor with age. However, in some of the models (front and back impact) 

relationships between the factors and injury severity were not significant for male occupants.  

A different approach to the statistical modeling was undertaken by Chang and Mannering 

(1999) to find the relationships between occupancy and injury severity for truck and non-truck 

involved crashes. A total of 17,473 vehicle involvements from King County (including the city 

of Seattle) in Washington State were used in the analysis. In this case, the unit of observation 

was the most severe injury for each vehicle involved in a crash. The investigators developed a 

nested structure with four levels of vehicle occupancy in the upper nest and three levels of injury 

on the lower nest. This structure was used for modeling truck and non-truck crashes, resulting in 

eight models (upper nest). The results showed that most of the significant factors in the models 

had similar trends for both the truck and non-truck involved crashes. Non-use of driver restraints 

(safety equipment), ejection, and alcohol involvement were significant factors that increased 

injury severity. Other significant factors such as functional classification (non-truck) and speed 

limit (truck) were correlated, but showed the increased effect of speed in truck crashes. Gender 

was also relevant, with increased severity for females in truck crashes, but the opposite in the 

non-truck crashes. Young and old age groups were also found to have increased injury severity. 

Other significant factors included night time, season indicators and weekend indicators. Across 

the literature, weekend stands out as a consistently significant factor. This is probably related 

more to travel choice and driver behavior than to any significant change in environmental 
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characteristics. The results also suggested that the truck involvement increased injury severity, 

more so on vehicles with multiple occupants.  

In a study looking into a smaller and more homogeneous sample, Khattak (2001) used the 

1994-1995 North Carolina data for rear-end crashes involving two and three vehicles and 

occurring on access-controlled highways. A total of 3,425 two-vehicle and 487 three-vehicle 

crashes were analyzed in three different models, one for each driver. For the two-vehicle crashes 

selected for analysis, driver 1 was the leading driver (no frontal vehicle damage) and driver 2 

was the following driver (with frontal vehicular damage and no rear-end crashes). For the three-

vehicle crashes selected, driver’s 1 vehicle had rear-end damage, driver’s 2 (following) vehicle 

had both frontal and rear-end damage and driver 3 (following) had only frontal end damage. This 

model selection sophistication was possible due to the limited nature of the data and information 

effects pursued in this study. In this case, three separate unrestricted models (one for each driver 

position) was preferable to using one (restricted) pooled model due to the impact of the sequence 

of drivers in a crash on injury severity.  The results showed that the leading driver was more 

severely injured in two-vehicle crashes, while the driver in the middle is most severely injured in 

three-vehicle crashes. Being in a newer vehicle protects driver 2, while a newer vehicle 1 can 

reduce both driver’s 2 and 3 injury severity. A few interactions among vehicle variables were 

tested and found to be non-significant. 

In a regional study of the Province of Udine in Italy, Valent et al. (2002) developed 

several logistic regression models from a sample of 10,320 crashes involving 18,227 drivers in a 

six year period.  The models featured adjusted odds ratios to assess relative risk of vehicle 

drivers (overall), car drivers, truck drivers, motorcycle riders, moped riders, cyclists and 

pedestrians. The odd ratio estimates for most models measured the likelihood of fatal injury vs. 
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non-fatal injury. For the car driver and truck driver models, the odd ratios were estimated for 

both the likelihood of fatal injury vs. no injury and non-fatal injury vs. no injury. The odds ratios 

for all drivers combined demonstrated decreased likelihood of fatal injury for females and 

increased chances for adult and older drivers (vs. younger drivers); drivers of motorcycles, trucks 

and bicycles (vs. car drivers); provincial and state roads (vs. municipal roads); and night hours 

(vs. day). Tendencies were similar for the motorcycle and moped riders, cyclists and pedestrians. 

Seasonal and day of week effects were also found to be significant, but changed trends by driver 

type, which shows some underlying travel choice exposure factors. For the car drivers some of 

the odd ratios (seat belt use and road type) tended to be much higher for the fatal vs. no injury 

models. All of the models were evaluated using the Wald test for the overall model and the 

Hosmer-Lemeshow test. The all driver combined model had the least favorable Hosmer-

Lemeshow p-value, although the model had acceptable calibration. Another possible issue that 

may have influenced the higher odd ratio estimates was the long period (6 years) of data, which 

could cause overestimation due to repeated observations. 

Using the crash data from the 1998 National Automotive Sampling System GES, 

Kockelman and Kweon (2002) developed six ordered probit regression models of driver injury 

severity. Three datasets were used: all crashes, single-vehicle crashes and two-vehicle crashes. 

Two models were developed for each dataset: all records (with and without speed variable) and a 

sub-set of records with the speed variable present. From the results, the age variable coefficient 

indicated increased injury severity with increased age for all crashes and two vehicle crashes, but 

not for single vehicle crashes. Although the continuous age variable does not provide full 

information about the effects for different age groups, these results suggest that the age effect 

tends to increase for the younger drivers and not for the older drivers. All the models agree on 
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the coefficient signs for the crash types used in this study, with the head-on and rollover crashes 

having negative signs (increased severity) and the rear-end, left and right sideswipes with 

positive signs. The effect of vehicle types was different for the single and two-vehicle crashes. 

The results for the single vehicle crash model suggest that pickups and sport utility vehicles 

(SUV’s) are less safe than passenger vehicles. On the other hand, pickups and SUV’s have a 

positive (less injury) effect on their drivers and a negative effect on the drivers of the second 

vehicle involved. Other variables that were found to the significant included the presence of 

other occupants (increased severity for single vehicle crashes), daylight hour and interaction 

between weekend days and late-night. Since the GES sample is heterogeneous in geographical 

and infrastructural terms, the collection of variables and trends serves as a good lead for 

systematic studies of driver injury severity. 

The results of studies in smaller jurisdictions, such as the one by Al-Ghamdi (2002), 

demonstrated a reduced number of significant factors. A sample of 560 subjects with serious 

(injury or fatal) involvements from August 1997 to November 1998 in the Riyadh, Saudi Arabia 

urban area were used for the model. A binary logit model of injury severity (fatal vs. non-fatal 

injury) was developed. Crash location (intersection vs. non-intersection) and contributing cause 

were found significant at the 0.05 level. However, the age variable coefficient had a p-value 

marginally significant (0.06). The crash location coefficient indicated that non-intersection 

involvements increased the risk of fatal crashes. This may be partially explained by the tendency 

of lower severity crashes at signalized urban intersections. 

To remove possible confounding effects of seating position and vehicle characteristics, 

Bédard et al. (2002) used single vehicle crashes from the FARS database (1975-1998) to predict 

driver fatalities. The advantage of this data selection was the increased accuracy of the FARS 
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database; however, it does not provide a generalized model for injury severity because there was 

at least one fatal injury in every crash and about 50% of the drivers sustained a fatal injury. A 

multivariate logistic model was developed and driver age, gender, blood alcohol level, point of 

impact, restraint use, the speed of vehicle, model year, and wheelbase indicator were found to be 

significant. This model correctly classified 69% of the observations. The seat-belt use (self-

reported) may be biased due to legal consequences and when adjusting for a 14% over-reporting 

(based on previous studies), the odds of fatality were found to be 23% lower for drivers that used 

seat belts compared to those who did not.  

Ulfarsson and Mannering (2004) developed several multinomial logit models to estimate 

contributing factors to injury severity. Four injury severity levels (no injury, possible injury, 

evident injury and disabling/fatal injury) were included in the multinomial structure. Fourteen 

separate models were used to estimate injury severity for male and female drivers in single 

vehicle crashes for passenger cars, pickups and SUV/minivans; two-vehicle crashes were 

modeled with the resulting four combinations of these vehicle types. For each model, as sub-

sample was selected using exogenous, random sampling. A total of 22,068 driver involvements 

of Washington State crash data between January 1, 1993 and July 31, 1996 were used for the 14 

models. The possible correlation in the two-vehicle accident cases because of two vehicles from 

the same crash was judged to be minimized by the sampling from a large database. The results 

showed that there are significant differences between the resulting models for male and female 

drivers in almost all of the seven cases. However, the vast majority of the coefficients retained 

the same direction (increasing or decreasing injury severity) in both the male and female models. 

Two notable exceptions are: contributing cause (did not grant right of way), and fixed object 
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crash (struck guardrail). These are mostly related to individual driver behavior, thus major 

differences are expected. 

An exploratory analysis of large truck crashes in California investigated the differences 

between rural and urban driver injury severity risks (Khorashadi et al., 2005). Crash records on 

17,372 vehicles (11,072 involvements in urban areas and 6,300 in rural areas) were drawn 

randomly from the California 1997-2000 crashes involving at least one large truck. Measures 

were taken to avoid choosing more than one vehicle from each crash to avoid correlation 

problems. The multinomial logit model developed for the crashes in rural areas resulted in a wide 

variety of significant variables with 50 coefficients estimates. Overall model fit was assessed via 

the likelihood ratio index (ρ2=0.52) suggesting a good fit. The most influential variables were 

crash location (beyond shoulder, left lane), vehicle movement prior to crash, alcohol 

involvement, highway location (intersection), vehicle type and large truck driver at-fault. On the 

other hand, the model developed for the crashes in urban areas resulted in a wide variety of 

significant variables with 55 coefficients estimates. Overall model fit was assessed via the 

likelihood ratio index (ρ2=0.69) suggesting a good fit. The most influential variables were 

alcohol involvement, crash location (beyond shoulder), crash type (fixed object, broadside), 

driver at-fault (large truck and passenger vehicle) and vehicle age (older than 1981 model year). 

In addition to the strong likelihood statistical test results indicating that the two models should 

remain separate, there is compelling evidence of great differences between the two models. Not 

only the most influential variables and coefficients are very different, but a total of 13 

coefficients were significant in the rural model, but not the urban and 17 coefficients were 

significant in the urban model, but not the rural.  
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A systematic methodology for a binary logit regression model was presented in a study of 

73,746 pedestrian crash injuries in Hong Kong from 1991 to 2004 (Sze and Wong, 2007). The 

response was a fatal or severe injury vs. a slight injury. First, a main effects model was fitted to 

find the significant variables from a group of crash, pedestrian, environmental and vehicle 

characteristics available in the crash database. Then confounding and temporal interaction effects 

were explored to improve the model. The model goodness of fit was verified using the Hosmer-

Lemeshow test and logistic regression graphical diagnosis, including leverage and residuals. The 

number of risk groups in the Hosmer-Lemeshow test was g > p+1, were p is the number of 

covariates in the regression model. 

In general, injury severity analysis of involvements has been richly developed over the 

years to become one of the forefront tools used in the traffic safety field. The quality and 

accuracy of the models have improved as well as the interpretative power of these studies. In 

examining different types of studies the goal is to use them as a foundation to qualify and 

interpret the results of the analysis presented in this report. The limitations of crash report data 

are the greatest concern when studying injury severity, especially for minor crashes. The main 

analysis goal is to find the relationships between crashes without harmful interference from 

within crash effects. Some data subset modeling techniques included separate models by crash 

type, rural and urban, type of driver, gender, type of vehicle and driver age. In some of the 

studies, data preparation included separating single from multiple vehicle crashes. In others, 

driver involvements were selected by a systematic random process to avoid repeating 

involvement observations from one crash. In regards to injury severity levels, many of the 

studies reviewed in this section used combinations of the injury levels in order to maintain 

statistical power and avoid confounding effects. 
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Table 2-1: Summary of Injury Severity Regression Analysis using Crash Involvements 

Published study Statistical 
methodology 

Correlation 
accounted*   Type of sample Sample 

Size Jurisdiction 

O’Donnell and 
Connor (1996) 

Ordered logit, 
probit models No Census 18,069 New South 

Wales, Australia 
Mercier et al. 

(1997) 
Logistic 

regression No Head-on crashes on 
high-speed roads 2,171 Iowa 

Duncan et al. 
(1998) 

Ordered 
probit No Two-vehicle car-truck 

rear-end crashes 1,175 North Carolina 

Mercier et al. 
(1999) 

Logistic 
regression No Broadside and angle, 

rural high-speed 4,261 Iowa 

Chang and 
Mannering (1999) 

Nested logit 
model No Truck and Non-truck 

vehicle crashes 17,473 Washington 
State 

Krull et al. (2000) Logistic 
regression No Single-vehicle 

crashes 59,743 Michigan, 
Illinois 

Khattak (2001) Ordered 
probit model No Multivehicle rear-end 

drivers (3 models) 3,912 North Carolina 

Valent et al. 
(2002) 

Logistic 
regression No Census 18,227 Udina, Italy 

Al-Ghamdi (2002) Logistic 
regression No Urban injury or fatal 

crashes 560 Riyadh, Saudi 
Arabia 

Kockelman and 
Kweon (2002) 

Ordered 
probit model No GES data (all crash 

types; 1,2 veh. crash) N/A National 
(U.S.A.) 

Bedard et al. 
(2002) 

Logistic 
regression No FARS data (single-

vehicle fixed-object) 44598 National 
(U.S.A.) 

Dissanayake and 
Lu (2002) 

Logistic 
regression No Older driver fixed-

object crashes 7,371 Florida 

Toy and Hammitt 
(2003) 

Logistic 
regression No Two-vehicle crashes 6,481 National 

(U.S.A.) 
Ulfarsson and 

Mannering (2004) 
Multinomial 

logit No Single and two light 
vehicle crashes 22,068 Washington 

State 
Khorashadi et al. 

(2005) 
Multinomial 

logit No Truck crashes (one 
driver per crash) 17,372 California 

*Indicates whether statistical method accounted for correlation between involvements in the same crash. 
 

 

A summary of past studies where crash involvements were used in the injury severity 

analysis is presented in Table 2-1. The amount of past research demonstrates the capabilities of 

logistic regression as a method to model crash injury severity vs. a set of continuous and discrete 

independent variables. Interactions were found significant in several studies such as: light-

weather, alcohol-seat belt, among others. Only a few models in past studies attempted to 

combine single and multiple vehicle crashes. No injury severity analyses were found to have 
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exclusively used data from high-speed arterials. Although there is a substantial amount of 

literature demonstrating different uses of severity analysis, only a few studies dealt with a sample 

as large as the one undertaken in this research. Also, no past study has addressed the differences 

in reliability of the driver injury severity models when controlling for road entities and when 

controlling for road entities and crash types. 

 

2.3 Crash and Injury Severity Model Comparisons 

Several methods of assessing the validity of a model have been well discussed by the 

literature. This summary of previous works involving injury severity analysis is intended as a 

guide of the accepted methods to compare different statistical models. In general, logistic 

regression analysis can be assessed using several measures of performance. For comparing the 

reliability models that use different datasets, calibration and discrimination measures have been 

used. More on these measures is discussed in Chapter 3. Several studies have dealt with these 

comparisons, some of which are presented next. 

In the study be O’Donnell and Connor (1996), the two models (ordered probit and logit) 

exhibited similar goodness of fit (Veal-Zimmerman Pesudo-R2). The coefficients of the ordered 

probit were consistently lower than their logit counterparts. The asymptotic t-ratios suggested 

that the standard errors were lower for the ordered logit model, but this could not be verified. 

The coefficient signs of the two models agreed, except for the effects of time of crash, which 

were not found to be significant in the ordered logit model. In summary, none of the models 

showed a significant advantage over the other. 



31 

In a study using a sample of 43,913 crashes reported in Ontario, Canada during 1986 the 

investigators assessed the reliability of different crash severity models (Saccomanno et al., 

1996). The criteria utilized included goodness of fit, robustness of risk factor coefficients, and 

whether the resulting coefficients where acceptable and consistent with previous research and 

scientific principles. In this study, three model structures were tested. Models 1a and 1b were 

disaggregating sequential binary logit models (five injury severity levels, four injury severity 

expressions). Two sequencing options (a, b) were developed: from No Injury to Fatal Injury, and 

vice versa. Model 2 was a disaggregate two-stage binary logit model, where two injury severities 

were considered at each stage. In stage 1, injury severities were classified as severe and non-

severe. In stage 2, the severe cases were further classified into Fatal and Major Injury, whereas 

the non-severe cases were split into minor and minimal injuries and no injury. Model 3 was an 

aggregate binary logit model with only two severity levels: severe (fatal and major injury) and 

non-severe (minor, minimal, and no injury). The model comparison of statistical goodness of fit 

at the injury expression level employed a similarity index (to measure predictive reliability of 

each injury severity in each model) and the expected percent correct (case by case using Monte 

Carlo statistical estimating techniques). At the overall model level, two success index indicators 

that measured correct case-specific classifications in each severity model for each injury level as 

well as the whole model (all the injury expressions treated together) were developed. Also, the 

Predicted Less Observed Injury Severity Share was used for the overall model only. Each model 

was finally compared in terms of the statistical significance of the injury expression coefficients 

(t-tests), and whether the results were scientifically acceptable. The results of the analysis 

suggested that model reliability is not sensitive to the number of injury classes specified in the 

model or to the level of model aggregation. The most important factors explaining most of the 
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variation in injury severity were the dynamics of the crash, seating position of the occupant, use 

of seat belts, and age of occupant involved. The accuracy of the information provided in the 

crash reports was the primary determinant of model reliability according to the authors.  

Krull et al. (2000) used logit models to analyze injury severity for drivers involved in a 

single-vehicle crash. Three-year crash and road inventory data from Michigan (1994-1996, 

N=35,447) and Illinois (1993-1995, N=24,296) were collected from the Highway Safety 

Information System (HSIS) maintained by FHWA. The KABC0 injury scale is used in both 

jurisdictions and categories K (fatal) and A (incapacitating injury) were grouped together to 

represent severe injuries. Three single vehicle crash models were developed from the Illinois, 

Michigan and pooled data. A total of 16 driver, vehicle and environmental variables were 

included in the first regression analysis. However, adt was excluded due to a high correlation 

(0.533) with rural functional class, as shown by the correlation matrix. Likewise, the right 

shoulder width and left shoulder width were highly correlated and excluded as well. The 

significant factors found to increase injury severity for the three models were alcohol 

involvement, daylight, driver age, rural functional class, speed limit and rollover crash; on the 

other hand, restrain use, slick roadway and heavier vehicle types had a decreasing effect on 

severe injury. Only vehicle type showed non-significant coefficients for the Michigan and pooled 

models. When comparing the goodness of fit of these models, the pooled model performed better 

on the Likelihood Ratio Test statistic (not a formal goodness of fit measure), also the pooled 

model performed a little better on the R-square measure, which can be used to compare models 

using different datasets. Missing data-dummy variables for driver age and restraint use were 

found to be significant at the 0.10 level, suggesting a systematic reason for the missing variables. 
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A similar effort was undertaken as part of the final analysis presented in later chapters of this 

report.  

In a study focused on driver characteristics (Dissanayake and Lu, 2002), two sets of 

sequential binary logistic regression models were developed to describe the injury severity 

relationship of older drivers involved in fixed object-passenger car crashes in Florida between 

1994 and 1996. The dependent variable in one set of models was driver injury severity, while it 

was the crash injury severity for the other set. For each of the sets of models, crash or injury 

severity was varied from the least severe (no injury) to the most severe (fatality), and vice versa. 

The injury severity models were found to have better fit and predictive accuracy. The fit was 

compared using the rank correlation measures and the predictive accuracy was computed as the 

ratio of the true positives and true negatives to the total cases with a 0.5 cut point. The percent 

accuracy is equivalent to the percent concordant in a binary logit model. 

A study by Abdel-Aty (2003) using data from three counties in Central Florida developed 

three driver injury severity models for different road entities. For roadway sections, crash data 

from 1996-1997 (17,647 drivers involved in 7,891 crashes) were used. For signalized 

intersections, the same crash data years were used with 2,336 drivers involved in 1,168 crashes. 

Meanwhile only the 1999-2000 police reports were available for toll plaza crashes for a total of 

447 crashes and 803 involved drivers (725 with complete information). Different modeling 

methods were tested: multinomial logit, nested logit, and ordered probit. The goodness of fit 

measures likelihood ratio index and classification accuracy for each model were compared. The 

nested logit was the best model, while the ordered probit performed very well with considerable 

less data and modeling efforts. After testing several combinations, four categories of driver 

injury severity levels were found to produce the best models: no injury, possible injury, evident 
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injury, and severe/fatal injury. The factors related to driver’s age, gender, seat belt use, point of 

impact, speed ratio and vehicle type were found significant in all models. Driver at fault, land 

use and light-weather interaction were significant in the signalized intersection. Alcohol-seat belt 

interaction, lighting conditions, and the existence of a horizontal curve were found significant in 

the roadway section model. The model for toll plazas included weather condition, number of 

impacts, E-Pass lane, alcohol-seat belt, passenger car-speed ratio and two additional E-Pass 

interactions. 

In a study of crash severity levels at signalized intersections, Abdel-Aty and Keller 

(2005) explored the differences between ordered probit models using complete datasets and 

restricted datasets. The complete data included short forms (minor crashes) and long forms 

(crashes available in the CAR and FDHSMV crash databases). The restricted dataset included 

only the long form crashes. Crash data from four counties in Central Florida during the years 

2000-2001 were used to develop five models: 7,833 crashes reported on long forms (restricted 

dataset) and 21,204 crashes in the complete dataset (including short forms). The first two models 

analyzed the restricted and the complete dataset crash severity with only crash type and county 

indicator as independent variables. The next two models used the same datasets, but with 

intersection characteristics as their independent variables. In both cases, the models with 

complete datasets fared much better in classification accuracy. Also, right turn crashes were 

significant in the complete dataset model and not in the restricted model. Meanwhile, most gains 

in variable information were achieved in the intersection characteristics complete dataset model 

(major road no. of lanes, left and right turn lanes, division on minor road, and adt on major road). 

It was decided to use the complete dataset for the final model with a combination of independent 

variables of the previous models. This final model achieved a high level of classification 
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accuracy (79.1%), but lost all but two (median and speed limit on minor road) intersection 

characteristic variables. The combined model also lost the right turn and sideswipe crash types 

(which are less severe). In this study, goodness of fit and variable information was used for 

comparison and demonstrated the usefulness of the complete dataset for the less severe crash 

types. It also showed a tradeoff between the amount of significant factors (especially road-

related) and the overall risk assessment provided by the combined variable model.  

A summary of the methods used to compare the statistical models just discussed is shown 

in Table 2-2. The coefficient signs are always checked for agreement with previous studies and 

scientific principles. Coefficient robustness and classification accuracy are also important in 

comparing models. This is not an exhaustive list, but the fundamental issues in comparing 

models have been adequately covered in this section. 

 

Table 2-2: Summary of Goodness of fit Comparison Methods from Past Studies 

Regression 
Analysis / 

Goodness of Fit  

O’Donnell 
and 

Connor 
(1996) 

Saccoma
-nno et 

al. (1996) 
Krull et al. 

(2000) 

Dissanaya-
ke and Lu 

(2002) 
Abdel-Aty 

(2003) 

Abdel-
Aty and 
Keller 
(2005) 

Statistical model 
Analysis type 

Ordered 
probit and 

logit 

Logistic 
regression 

Multinomial 
logit 

Logistic 
regression 

Multinomial 
nested logit 
ord. probit 

Ordered 
probit 

Unit of analysis Occupant 
involvement 

Crash 
severity 

Driver 
involvement 

Driver 
involvement 

Driver 
involvement 

Crash 
Severity 

Rank Correlation 
measures    X   

Classification 
accuracy  X  X X X 

Likelihood Ratio 
Test   X    

Pesudo-R2 X  X    

Coefficient signs  X X X X X X 
Coefficient 
robustness  X X X X X 

Similarity Index  X     
Likelihood Ratio 
Index     X  
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Finally, there are other studies that include additional goodness of fit statistics for the 

logistic regression model. Valenti et al. (2002) did not discuss model comparison, but provided 

the necessary goodness of fit data for the different logistic models. It was found that although all 

models have acceptable fit, the overall driver models had less favorable calibration  (Hosmer-

Lemeshow statistic) when compared to the models that only considered one group of drivers or 

pedestrians. The authors indicated that the study had several limitations, among them not having 

separate analyses for each crash type. In another logistic regression analysis (Sze and Wong, 

2007) the model goodness of fit was verified using the Hosmer-Lemeshow test and logistic 

regression graphical diagnosis, including leverage and residuals. 

 

2.4 Analysis of Crashes on Arterial Roads 

2.4.1 Crash Frequency Analysis on Arterials 

Several studies have focused on examining crashes on arterial roads and found important 

factors that influence both the frequency and severity of crashes occurring on these roads. Milton 

and Mannering (1998) used data for principal arterials in Washington State from 4,368 km. of 

highways and 11,757 crash records. Road characteristics by sections were integrated with the 

crash data. Sections with intersections were excluded due to lack of data about the crossing 

(minor) roads that could create omitted variable bias. Two negative binomial frequency models 

were developed for the eastern (11,058 sections) and western part (20,248 sections) of the state 

to account for climate variations. The observations, one crash count per road section, were 

entered into the models. The results showed that higher aadt per lane, Medium aadt (<2500), 
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number of lanes, narrow right and left shoulders, tangent-curve indicator section increased the 

crash risk. Higher peak hour aadt percentage, truck (eastern) or single-truck (western) percent, 

speed limit, sharp horizontal curves, curve radius, and tangent length resulted in decreased crash 

risk. This shows that roads with higher exposure (in aadt and section lengths) higher conflicts 

(number of lanes) and lower design standards (narrow shoulders and long tangents with tight 

curves) increases the crash risks. On the other hand, congested roads, higher truck percentages, 

higher speed limits, curve radius and tangent length demonstrate higher design standards and 

better performance in crash frequency. Sharp horizontal curves tend to decrease crash frequency 

(perhaps due to driver caution), except when there are more curves relatively close (tangent-

curve interaction). 

Brown and Tarko (1999) developed a crash frequency analysis of total crashes, property 

damage (PDO), and injury/fatal crashes was developed using five years of data on 155 Indiana 

urban multilane arterial segments. The three negative binomial models agreed that the crash risk 

increased with increased access density (number of accesses per km of road) and the presence of 

signalized access points. The presence of outside shoulders, two-way left turn lanes (TWLTL) 

and medians without openings were found to decrease the risk of crashes in all three models. 

Further analysis showed that the percentage of injury and fatality crashes increased with the 

increase in access density in linear fashion. The effect of access control on crash severity was 

found weaker than on crash frequency.  

Similar factors were found to be significant for the crash frequency model for one major 

arterial in Florida. Abdel-Aty and Radwan (2000) used roadway data from 566 segments which 

included 1606 crashes. A negative binomial model of crash frequency showed an increased risk 

with an increased section length, aadt per lane, degree of curve, and in an urban section. 
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Increased lane width per lane, shoulder and median widths decrease the risk of crashes. 

Additional models by driver age and gender showed additional factors that depend in driver 

involvement characteristics. For males, young and middle age drivers, an increase in the speed 

difference/speed limit increases the crash risk. Meanwhile, for older drivers a paved shoulder 

decreases the crash risk. 

A study using road and crash data from two cities in Arizona focused on the median 

effects on urban arterial safety (Bonneson and McCoy, 1997). The negative binomial model 

results suggest that crashes are more frequent in segments with higher traffic volumes, driveway 

or street densities. Business or office land use increases crash risk when compared to residential 

areas. Regarding the median effects, the undivided cross section has significantly higher crash 

frequency than the TWLTL or raised curb median treatments when parallel parking was allowed 

in the undivided street. Meanwhile, where no parking is allowed in either street, the different 

between the undivided and the TWLTL treatments is small. The positive effect of raised curbs is 

greater for larger traffic volumes (>20,000 vpd). Research urban arterial roads in Ethiopia 

(Berhanu, 2004) showed that wider roadway width, wider and paved sidewalks and raised curb 

improves safety performance. Also, poor access management (increased minor junction density) 

negatively affects crash rates.  

In a study using data similar to the focus of this investigation, Abdel-Aty and Wang 

(2006) focused on 476 signalized intersections along 41 arterial corridors in Florida. The results 

of this research showed significant correlations between nearby intersections. After dividing the 

intersections into 116 clusters, models to analyze the correlated data were developed. The results 

indicated that intersections with a large total number of lanes, high traffic volumes, short signal 

spacing, high speed limits along corridors, and a large number of phases are related with 
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increased crash frequency. On the other hand, lower crash frequencies were associated with 

intersections having three legs, with exclusive right turn lanes on both roadways, having a 

protected phase for left turns in the corridor, and located in residential or open country areas. 

This study stressed the importance of the availability of geometric data for major and minor 

roads, traffic volumes and traffic control data for intersections. Signalized intersections on 

arterial roads are complex and additional information is required for the statistical analysis. 

Potts et al. (2007) investigated the potential of right turn deceleration lanes in improving 

arterial operation and reducing crash risk. Economic analysis was performed using data from 

computer simulations with different major road volumes, right-turn volumes and right-turn 

speeds. A total of 602 scenarios with 30 simulation runs each were analyzed with costs for 

delays and crashes (based on Safety Analyst data) avoided with a 20 year life and a 4% 

minimum rate of return. The delays of right turns in four lane arterials are substantially lower 

than for two lane arterials, but the crash cost is higher for the four lane road. The main 

economical benefit of the right turn lanes for four lane urban arterial roads in this study was the 

safety improvement.  

Arterial corridors have shown to pose some particular challenges when analyzing crash 

data. These types of roads have different types of access, higher traffic volumes and changes in 

land use which are characteristics different to other road types (i.e. two-lane or freeways). In 

addition, correlations between the nearby intersections and the lack of road data for some of the 

corridor components (intersections and driveways) are a crucial obstacle in obtaining accurate 

crash occurrence prediction. Traditional analysis by segments and intersections is not enough to 

describe the safety performance of these types of roadways. 



40 

2.4.2 Related Studies on Non-freeway Multilane Roads 

Related studies with non-freeway and multilane roads suggest some of the factors that 

might be significant in crash occurrence and severity on arterial roads. Some studies have 

compared the percent reduction of crashes or crash rates under different road conditions. McCoy 

and Malone (1989) investigated the effects of left turn lanes on urban four lane roadways. The 

use of left turn lanes at intersections were found to significantly reduce rear-end, sideswipe and 

left turn crashes. On the other hand, on uncontrolled approaches of undivided roads, left turn 

lanes significantly increased right-angle crashes, while decreased rear-end, sideswipe, and left 

turn crashes. The authors argued that longer distance for cross-street maneuvers on undivided 

roads increased the right angle crash risk. This and other studies point to the importance of 

access management in reducing the most severe crashes in urban areas, by using medians 

effectively. In study of Indiana rural multilane roads crash rates Karlaftis and Golias (2002) 

found that, when controlling for aadt, median width and access control are the most important 

factors affecting crash rates followed by the pavement condition factors. Lane width and the 

presence of left turn lanes are also significant variables affecting crash rates.  

A study of the crash rates and severities in 111 segments of high-speed (>40 mph) urban 

and suburban highways in Arkansas suggests that median treatments and access management has 

a positive effect on safety (Gattis et al, 2005). The analysis included comparing three years of 

crash data with road segment median, traffic volume and access frequency. Crash severity and 

types were also examined. As median widths increased, crash rates declined. As access density 

increased, so did the crash rates. Roads with shoulders and depressed medians had the lowest 

crash rates, while undivided roads with curbs had the highest rates. In terms of crash severity, the 
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rates of severe (fatal and severe injury) crashes were significantly higher for undivided, without 

shoulder category, while adding shoulders significantly improved the crash rate. Eisele and 

Frawley (2005) before and after analysis had similar results. Crash rates and severities for 11 

corridors in Texas and Oklahoma were compared. The crash rates increased as access density 

increased for all types of medians, while crash rates and severity decreased after raised medians 

were installed in the corridors. 

In a crash frequency analysis of 10,517 segments of non-freeway state roads in Oregon a 

zero-inflated negative binomial model was developed (Strathman et al., 2001). The coefficients 

of the model showed a decrease in crash frequency when posted speed, average lane and right 

shoulder widths increase. The presence of left turn lanes, and vegetation or curbed medians also 

showed decreased crash frequency. Increased exposure (segment length), maximum curve length 

and maximum vertical grade increased the crash frequency in the model. Hauer et al. (2004) 

developed separate models for off-road and on-road crash frequency on urban four-lane 

undivided roads in Washington State. The fit depended mostly on variables aadt, number of 

commercial driveways, speed limit, while vertical alignment, lane and shoulder width have 

weaker contributions. The results suggests that horizontal curves of moderate degree are safer 

than tangent sections on urban four lane undivided road segments.  

Finally, a recent study by Potts et al. (2007) using data from North Carolina, Minnesota 

and Michigan found no consistent, statistically significant between lane width and crash 

frequency. Separate negative binomial models were developed for urban and suburban arterials 

segments and intersection approaches for each state analyzed for a total of 180 models. Although 

the results were not consistent, in one of the models it was found that a lane width of 3.0 m (10 

ft) or less in four-lane undivided arterial segments increased crash frequency. Meanwhile, lane 
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widths of 2.7 m (9 ft) or less on four-lane divided arterial segments was found to increase crash 

frequency in another model. The lack of literature that addresses road characteristics in arterials 

does not allow for effective comparison between studies. 

 

2.5 Injury Severity Involvement Contributing Factors  

A series of driver, vehicle, environmental and crash factors have been analyzed in past 

research. Some of the most significant results related to the present work are shown in this 

section.  Most of the injury severity analysis is undertaken with a narrower research focus 

compared to the crash frequency analyses in the literature. Due to its disaggregated nature, injury 

severity involvement is an appropriate unit of analysis to better understand the nature and 

mechanism of different crash types. A simple comparison of different studies focusing on certain 

crash types will bring useful insight for the analysis presented in this report. 

A summary of some results from studies focusing on different crash types is presented in 

Table 2-3, page 43. The diversity of contributing factors presented here is not only a function of 

the differences in crash types, but is also dependent on other factors such as data availability and 

research focus. Some of the research studies focus primarily on driver characteristics, while 

others had roadway attribute data available. In spite of some of the limitations, this summary 

shows that driver characteristics are important for multiple crash types. Crash mechanism 

variables (including vehicle type) carry a major weight on the outcome of a crash. Roadway 

attributes have also an influence, especially on single-vehicle (most of the run off-road) crashes. 

Not indicated in this table, the different crash types studied by Mercier et al. (1997 and 1999) 

resulted in different coefficients carrying different weights. The information presented suggests 
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that if we had few data limitations, significant differences between crash types can be expected 

and furthermore the models would give an insight into some of the contributing factors unique to 

certain crash types. 

 

Table 2-3: Summary of Injury Severity Regression Analysis of Different Crash Types from Past Studies 

Method / Type / 
Significant factors 

Mercier et al. 
(1997) 

Duncan et al. 
1998 

Mercier et al. 
(1999) 

Lee and 
Mannering (2002) 

Regression method Logistic Ordered probit Logistic Nested Logit 
Crash Type Head-On Rear-end car-truck Broadside, angle Rural Run-off Road 
Seating pos. X  X  

Seat Belt / Safety 
Equip. X X X  

Belt*Age X  X  
Age  X  X  

Age*Position X  X  
Position*Safety 

Equip X  X  

Gender X X X  
Vehicle type  X   
Speed Diff. /  

Speeding  X  X 

Speed Limit  X  X 

aadt/Lane  X   
Road Character  X   
Lighting Cond.  X   
Surface Cond.  X  X 

Alcohol  X  X 
Shoulder indicator    X 
Narrow shoulder    X 

Fixed-object    X 
Vehicle Defect  X   

Rollover  X   
Time of day    X 
Day of Week    X 

Year    X 
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One of the early studies with a large and disaggregated cross section dataset (O’Donnell 

and Connor, 1996) resulted in a variety of road user, vehicle, environment and crash event 

contributing factors. Increases in the age of the occupant and vehicle speed led to small increases 

in the probabilities of injury and death. Other factors found to have an increased injury trend 

were: seating position (other than driver), blood alcohol level, age of vehicle, vehicle type (other 

than passenger car), vehicle make (one manufacturer), seat belt not worn, and type of collision 

(other than fixed object). The only surprising finding was the driver seating position being safer, 

which may underline seat belt usage effects. The author did not mention, but it was also 

interesting to see that the fixed object crashes were found to have lower injury odds ratio than the 

right angle crashes, which may be affected by vehicle occupancy (exposure) in single vehicle 

crashes. 

The effect of light trucks and vans (LTV) on driver injury severity levels was investigated 

using a logistic regression model by Toy and Hammit (2003). A sample from the U.S. 

Crashworthiness Data System of 6,418 two-vehicle crashes was used in the analysis. The risk of 

severe or fatal injury (yes vs. no) was computed by means of the odds ratio. The Abbreviated 

Injury Severity (AIS) scale from 1 (minor injury) to 6 (maximum, untreatable injury); a value of 

3 corresponds to serious injury. Vehicle factors for both involvements in each crash were first 

entered into the model. Driver factors were then added to the model to examined possible 

confounding effects, age and gender and restraint use did not appear to confound the driver 

injury severity relationships with vehicle factors. Crash factors were then considered and the 

delta-v (change in velocity, joint effects of vehicle mass and crash severity) acted as a 

confounder, especially for the injury risk of drivers involved in a pickup truck crash. The results 

of the final model showed increased risk when a driver is struck by a pickup, for older drivers, if 



45 

no seat belt is used, for larger delta-v, for left side impacts. The risk of serious or fatal injury was 

decreased for rear impacts. The authors concluded that vehicle mass and crash severity 

contribute to the self-protection and risk to others in a crash. On the other hand, vehicle body 

type characteristics (stiffness and center of gravity) are underlying contributors to the injury 

severity risk. 

Lefler and Gabler (2004) used national crash samples to investigate the fatality and injury 

risk of pedestrians stuck by different vehicles. Only accidents involving a single vehicle and 

pedestrians were included in the analysis. Data from the national FARS and GES databases, as 

well as the Pedestrian Crash Data Study (PCDS) were combined to increase the amount of 

information available for each crash. Pedestrians were found to have two to three times the 

likelihood of dying when struck by an LTV than when struck by a car. Pedestrian injury 

distributions showed a significant increase in serious head and thoracic injury when the striking 

vehicle is an LTV when compared to a passenger car, after controlling for impact speed. 

In a study of 1999 Indiana crash data to analyze the effect of age and gender on driver 

injury severity, only single vehicle crashes were selected to avoid confounding effects of crashes 

involving multiple vehicles (Islam and Mannering, 2006). Three driver injury levels were used: 

fatality, injury and no injury. Six separate multinomial logit models were developed for males 

and females in each of three age groups: young (ages 16 to 24), middle-aged (ages 25 to 64), and 

older (ages 65 and older). The results confirmed previous studies that showed significant 

statistical differences between separate models by driver age and gender. Different contributing 

factors affect the injury risk for the gender and age groups modeled in this study.  

The contributing factors for most models discussed in the previous sections are 

summarized in Table 2-4, page 46.  The variety of the type of effects in the previous studies 



46 

demonstrates the evolution of injury severity analysis into a formidable analysis tool. Interaction 

and confounder analysis is required especially when more factor groups are found significant in 

some models. Some of the effects of factors in multivariate analysis are subject to confounding 

effects by unobserved variables. The offset hypothesis predicts that driver’s overconfidence (and 

riskier behavior) will negate some or all of the safety benefits of certain technological advances 

in vehicles. A study by Winston et al. (2006) tested the offset hypothesis using disaggregate data 

to analyze the effect of airbags and antilock brakes on crash outcome. The results of the analysis 

proved that airbags and antilock brakes had an insignificant effect on crash outcome 

probabilities. This suggests that many drivers trade off safety improvements for additional 

mobility. 

 

Table 2-4: Summary of Significant Factors’ Groups on Injury Severity Regression Analysis from Past Studies 

Published study 

Factors found significant in the analysis 

Driver 
attributes 

Vehicular 
characteristics 

Roadway 
design 

attributes 
Environmental 

factors 
Crash 

characteristics 
O’Donnell and Connor (1996)  Yes  Yes  –  –  Yes 
Mercier et al. (1997) Yes  Yes  – – – 
Duncan et al. (1998) Yes  Yes  Yes  Yes  Yes 
Mercier et al. (1999) Yes  – – – Yes 
Chang and Mannering (1999)  Yes  Yes  Yes  Yes  Yes 
Krull et al. (2000)  Yes  Yes  Yes  –  Yes 
Khattak (2001)  Yes  Yes  Yes  Yes  – 
Valent et al. (2002)  Yes  Yes  Yes  Yes  Yes 
Al-Ghamdi (2002)  –  Yes  Yes  Yes  Yes 
Kockelman and Kweon (2002)  Yes  Yes  Yes  –  Yes 
Bedard et al. (2002)  Yes  Yes  –  –  Yes 
Dissanayake and Lu (2002) Yes  –  Yes  Yes  – 
Toy and Hammitt (2003)  Yes  Yes  –  –  Yes 
Ulfarsson and Mannering 
(2004)  Yes  Yes  Yes  Yes  Yes 
Khorashadi et al. (2005) Yes  Yes  Yes  Yes  Yes 
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2.6 Literature Analysis Discussion 

In conclusion, the disaggregate unit of analysis by driver involvements is a proven 

method to capture the most important contributing factors of injury severity of crashes. In the 

case of high-speed multilane arterials, there is a limited amount of literature that deals with the 

effects of driver-, vehicle-, roadway- and environment-related factors on crash frequency and 

severity. In addition, there are only a few studies that deal with a statewide sample of crashes 

focusing on a road type. Some studies such as Valent (2002) had several limitations because they 

did not perform separate analyses for each crash type and road entities. It was shown that 

different crash types result in different contributing factors affecting injury severity. 

The literature shows the ample capabilities of logistic regression in driver injury severity 

analysis. In studies were the effects on two types of injury classes are pursed, it proved to be a 

powerful, yet flexible model that allowed analysis of injury severity vs. a set of continuous and 

categorical independent variables. Most literature mentions the use of one driver per crash and 

some such as Ulfarsson and Mannering (2004) pointed out the efforts to stratify the sample such 

that correlations between involvements will not bias the results. There is some recent literature 

that shows additional analysis of correlations between involvements in a crash. However, these 

are not mentioned in this discussion, as it is not part of the research goals in this phase of 

analysis, which is focused on the general method of analysis on high-speed multilane arterials. 

Future work should consider these additional relationships using the sampling methodology 

found best suited in this analysis.  

None of the past studies have attempted to neither combine the single and multiple 

vehicle crashes in an injury severity model nor have compared the reliability of models defined 
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by road entities and crash types, as proposed in the analysis in Chapters 4 and 5. The joint 

analysis considered in this investigation poses some specific challenges, including model 

stability, over dispersion due to clustering of crash types and possible bias different weights 

between the single and multiple vehicle crashes. These issues are addressed by comparing the 

joint analysis to the separate road entity and crash type analyses. Also, this study addresses a new 

paradigm in arterial crash analysis: a joint analysis of different road entities with traffic 

operations vastly different than on limited access or minor roads. There is recent evidence of 

spatially and temporal correlations that make signalized intersections at multilane arterials a 

challenging unit of analysis, as shown in studies such as the one by Abdel-Aty and Wang (2006). 

This may affect the results of joint analysis even when the selected statistical method in the 

present study does not directly accounts for spatial or temporal correlations. Current and future 

research on safer arterial corridors should be pursued to improve the method of analysis for the 

safety performance functions.  
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CHAPTER 3. RESEARCH DESIGN AND METHODOLOGY 

3.1 Crash Data Description 

3.1.1 Florida Traffic Crash Records Database 

The Florida Traffic Crash Records Database is a compilation of crash report data 

maintained by the Office of Management Research and Development of the Florida Department 

of Highway Safety and Motor Vehicles. The information corresponding to the years 2002 to 

2004 was obtained in a set of relational database tables in Microsoft Access® format. Three 

tables were used in this analysis: Events (crash information), Drivers and Vehicles. In these 

tables, driver, as well as road, environment and vehicle characteristics are provided for all 

crashes reported on long forms. The long form report is required by Florida law for the following 

cases: 

• Motor vehicle crashes result in death or personal injury, or 

• Motor vehicle crashes, in which a driver leaves the scene (hit and run), involve 

damage to an attended vehicle or property (Section 316.061 (1), F.S.), or 

• Driving under the influence of alcohol, chemical substances, or controlled substances, 

as defined by the Florida statues (Section 316.061 (1), F.S.), or 

• Other circumstances deemed important to the investigating officer; in particular when 

a vehicle is inoperable due to a crash (FDHSMV, 2007). 

This constitutes a limitation in the number of reported crashes available in the database 

especially for property damage only collisions. However, some of this limitation can be 
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overcome by selecting crashes on state roads only. State troopers are highly trained and tend to 

complete a large amount of long reports (about 40% of the total long report crashes). Since they 

operate on state roads, there is a higher probability of filling a long report for a crash occurring 

on a state road. However, the main reason for limiting the analysis to the state roads is to be able 

to use the traffic (aadt) and other road data available only for the state roads. This database is 

best suited for the driver information (involvements) because all driver data by crash report 

section are readily available. The long form crash report includes sections for each vehicle (or 

pedestrian) involved in a crash. Driver information is part of the vehicle section, thus it is also 

called a vehicle-driver section. Since our response variable is the driver injury severity, the 

Florida Crash Records Database was selected as the fundamental database for the data 

preparation. 

The Florida Traffic Crash Records Database includes a site location field, which 

identifies a crash as being at an intersection, intersection-related and non-intersection. As defined 

in the crash database, intersection-related involvements are those occurring within a 250 ft radius 

of an intersection and that are related to the operation of such intersection. There are other 

classification, such as private property and parking lots, which are not considered in this 

investigation. The focus of the analysis presented here are the intersection (including the 

intersection-related), non-intersection and driveway crashes (site location codes 1-4) occurring at 

high-speed multilane (speed limit 40 mph or higher) arterial roadways. Severe crash driver 

involvements are defined as those with incapacitating or fatal injury (injury levels 4 and 5 in the 

crash report).  

Previous research has demonstrated the relationship between driver, vehicle, crash and 

environmental elements and the risk associated with severe crashes given that a crash does occur. 



51 

A statewide analysis of high-speed multilane arterials involves a wide variety of possible risk 

conditions and thus the amount of variables that can be successfully incorporated in a model 

increases, given that enough sample size is available for each condition. 

3.1.2 Crash Analysis Reporting System (CAR) Database 

The FDOT Safety Office collects and maintains a crash database consisting of crashes 

reported on state roads. The data collection starts with the crash reports from FDHSMV which 

go through a filtering process. A data quality review of the reports may result in some changes as 

deemed necessary to the Safety Office. After this process, the crash data tables are merged with 

roadway characteristics tables created specifically for CAR. The road characteristics information 

source is the Roadway Characteristics Inventory (RCI) maintained by the Transportation 

Statistics Office. These tables are called freeze-break tables because of the process of obtaining 

the information. A snapshot of the RCI data is taken during the first days of January, applicable 

to the previous year. The program that forms the snapshot for the CAR System generates a 

handful of elements based on occurrence of point features in RCI along the length of the segment 

or break or based on a collective combination of other elements (FDOT, 2005). The roadway 

data available in CAR are more complete than that in the FDHSMV Traffic Crash Records 

database, but it is limited to crashes on state roadways. Another difference is that the crash report 

number is 9 digits long, adding one zero at the end of the FDHSMV report number. This was 

resolved by dividing the CAR report number by ten, making it equivalent to the FDHSMV 

number. For CAR crash reports with 8 digit numbers, additional verification confirmed that these 

did not match with 8 digits FDHSMV crash report numbers, rather these matched to 7 digit 
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FDHSMV crash report numbers. This validated the use of a divider to match crash report 

numbers. 

The CAR database is stored on AS/400 mainframes, and accessibility is much more 

difficult when compared to its FDHSMV counterpart. Even though most of the crash report data 

are available, a total crash data download is almost impractical for statewide analysis 

encompassing multiple years of data. The total data extract would include multiple data table 

breaks in one text document, which have been found to be prone to errors, so additional 

programming and caution is required. In addition, many downloads will be required to acquire 

three years of statewide data. As an alternative, the CAR system has a menu of downloadable 

reports which include the most commonly used crash and roadway data. These reports include 

the augment detail extract (option 3) and vehicle driver passenger extract (option 4), which were 

the most complete reports available. However, an analysis of the information available for these 

reports vs. the FDHSMV Traffic Crash Records database indicated serious deficiencies. Crash 

information such as on-off roadway classification was missing. Driver’s information was 

classified as at-fault and second driver and options 3 and 4 had to be merged to complete the 

information. Neither contributing cause nor harmful event information was available as required 

for this research. Therefore, a combination of data sources was used in this investigation. 

Another report utilized in this investigation was the Intersection Reference Report. This 

report contains yearly crash rate information for all intersections on state roads by county and 

node number, which uniquely identifies an intersection on a state road in Florida. Separate 

reports can be downloaded for every year, with intersection information. One field of 

information was of interest: number of approaches (num_legs). This process will be discussed 

further in the data preparation section. 
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3.1.3 Roadway Characteristics Inventory (RCI) Database 

According to the RCI Field Handbook (FDOT, 2005), the Roadway Characteristics 

Inventory is a database of various physical and administrative data related to the roadway 

networks that are either maintained by or are of special interest to the Florida Department of 

Transportation. This collection of highway information is maintained by District and the 

Transportation Statistics (TranStat) Office personnel and kept in the RCI database. The RCI 

elements that serve to define the roadway are comprised of components referred to as Features 

and Characteristics. These are the building blocks of the entire system, allowing access to the 

most complete roadway information in a series of reports in Microsoft Excel® format. This 

database has been web-enabled on the intranet platform of the FDOT.  

The main use of this database was to filter the crashes that occurred on arterials. Features 

121 (Functional Classification) and 122 (Road Access) were utilized. The characteristics used 

were funclass and rdaccess. A report limiting to state roads classified as arterials, but without 

full-access control was retrieved and used as one of the filters for the crash information. In 

addition, the freeze-break tables for the years 2002-2004 became available in time for the final 

analysis and roadway data were added to the dataset, see Section 5.4.1 for details. 

3.1.4 Video Log Viewer Application 

This application is also called the DOT Video Log and is maintained by the 

Transportation Statistics Office. It provides frontal and right views of any state road segment 

entered into the system. This ground level view can be framed backward and forward providing a 

continuous video or a particular high-quality digital snapshot of the road conditions. These 



54 

videos can be searched by roadway id (the basic identifying element for any road segment) and 

milepost and road direction. 

 

 
Figure 3-1: Video Log Snapshot of State Road 25 in Alachua County (RDWYID 26010000 North MP:3.577)  

 

A photo snapshot of a state road intersection (median opening) is shown in Figure 3-1. 

This photo clearly shows traffic signs (speed, bike lane, and yield-one-way sign combination) 

and general roadway characteristics such as medians, shoulders and number of lanes. In a 

systematic statewide study sometimes there are small groups of roads with missing or incomplete 

data. The video log proved to be an important application during the data filtering process to 



55 

distinguish between one-way and two-way roads. Also, it helped clarify some traffic control 

device issues raised during the course of the investigation. 

 

3.2 Crash Data Preparation 

3.2.1 Crash Data Preparation for the Exploratory Analysis 

3.2.1.1 Crash Data Combination 

As part of the preliminary analysis, data from one year (2004) were selected. The analysis 

performed was considered exploratory to examine the general trend in the crash data and train 

regression models. The process of merging the FDHSMV and CAR databases is presented in 

Figure 3-2, page 56. The driver and vehicle tables were merged (outer join) by crash report 

number and section number, which resulted in a driver-vehicle table with one row per 

involvement, with no loss of records. A simple merging operation (one-to-many) was performed 

to combine the events and the driver-vehicle tables in the FDHSMV data. This resulted in a 

combined dataset with one row per vehicle-driver involvement. Then, the additional road 

information from CAR was merged with the FDHSMV by crash number. No CAR database 

crashes were added in addition to the ones already in the dataset due to the driver and vehicle 

information limitations explained in previous sections. 
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Figure 3-2: Data Merging for Exploratory Analysis (Year 2004 Only) 
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Figure 3-3: Data Filtering for Exploratory Analysis (Year 2004 Only)  
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3.2.1.2 Crash Data Filtering  

There was a process of crash data filtering consisting of four steps. Figure 3-3, page 57, 

depicts the way the crashes occurring on high-speed multilane roads were selected. First, non-

state road crashes were excluded from the analysis because of the scope of this research and the 

limited roadway attribute information available for these crashes. Then, crashes on non-arterial 

roads and freeways were excluded from the analysis using the funclass variable brought from the 

CAR database. Finally, the remaining arterial road crashes were filtered to include only the crash 

records with num_lane values equal or greater to four and speed_limit values greater or equal to 

40 mph. Crashes occurring at intersections, influenced by intersections and non-intersection 

locations were selected for the analysis. Also, any remaining crashes were no vehicle was 

involved were excluded from the analysis by filtering total number of vehicles (>=1). This was 

only a precautionary measure since no driver involvements were expected in a crash not 

involving vehicles. The dataset used for the exploratory analysis consisted of 106,746 driver 

involved records. The final number of records used in the exploratory analysis was reduced to 

60,221 records (involvements) due to missing data in both the FDHSMV and CAR databases. 

Missing data did not follow any pattern, and therefore it is safe to assume that the complete 

records subset was chosen at random. 

3.2.1.3 Variable Coding 

After the data were refined, each categorical variable was setup as part of the preliminary 

analysis, were the major cutoff points were determined by contingency tables, past research or 

data mining techniques (bin optimization for continuous variables). The categorical variables 
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were coded using the reference cell method, were the level to compare against (base) was coded 

as the lower number (0 for a binary variable, 1 otherwise). Some of the continuous variables 

were later categorized according to the exploratory regression analysis results. The final analysis 

variable coding benefited from the experience in the exploratory analysis. 

3.2.2 Crash Data Preparation for the Final Analysis 

3.2.2.1 Purpose  

After the exploratory analysis, it was found that very high-speed crashes may have 

influenced some of the results. Further investigation uncovered a situation in which the funclass 

variable value 14 (Urban Other Principal Arterial) included some limited access facilities, 

violating the high-speed multilane arterial definition put forth for this investigation. In response, 

a multi-leveled stringent filtering process was adopted. Also, due to the data setup, crash and 

roadway variables were repeated for multiple vehicle crashes. This would have a bias effect on 

some of the contributing factors. This would mostly affect variables that are significant to single 

vehicle crashes, some overestimation of the multiple (more than two vehicles) crash variables 

and correlation of unobserved effects. However, it was still effective in determining driver- and 

vehicle-related contributing factors. Since all involvements were considered in this analysis, it 

will serve for comparison with the final analysis. 

A process for crash data preparation was outlined for the purpose of obtaining data from 

the two crash databases to be used in the analysis. It was later found that at least one of the crash 

databases did not contain enough information to correctly assign the crash records required for 

the analysis. Additional resources were also used in the process (see Figure 3-4, page 60). First, 

the two crash database data were merged into one larger database, excluding text and dummy 
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fields that will not contribute to the analysis. Then, a filtering of crash records was applied to 

extract the high-speed multilane arterial crashes. RCI road lists and video log output was used in 

the filtering process and additional crosschecking assured that the filtering process was 

successful. Finally, additional coding allowed appropriate dummy variable and interactions to be 

entered into the model. Details about these data preparation processes are presented next. 

 

 
Figure 3-4: Data Preparation Process for Final Analysis 
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3.2.2.2 Crash Data Merge Process 

3.2.2.2.1 FDHSMV Traffic Crash Reports Database Wide Formatting 

Data preparation for the analysis included a series of steps to ensure that the most 

complete data available were used without introducing a bias in the sample. The first step was to 

accurately merge the tables in the access database provided by FDHSMV. The key index was the 

Accident Report ID, which linked the events table to the vehicles table. The vehicles table was in 

turn linked to the drivers table by both the report number and the section number (each section of 

the report has the information of each individual vehicle and driver involved in a crash). The 

vehicles and drivers data tables have one row per involvement. The drivers and vehicles tables 

were merged for up to four driver-vehicle involvements in each crash. Less than 5% of the 

crashes include more than 4 vehicles; these data becomes too sparse for analysis and thus were 

not included in the crash file. A graphical representation of this process is shown in Figure 3-5, 

page 62. After a wide format with up to four driver involvements per crash row is obtained, the 

driver-vehicle file is ready to merge with the events table by report number. 

The major advantage of the wide formatting is that multiple cash involvements can be 

analyzed simultaneously. Due to the limitations of the analysis methodology and the scope of 

work of this study, the benefits of this format were not completely exploited. However, this data 

preparation process allowed a more complete analysis of variables by section number and the 

selection of an appropriate sample of crash involvements for the final analysis. The details of this 

analysis are presented in Section 5.3. The use of the wide format is recommended in future 

research work that includes severity analysis. 
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Figure 3-5: Process Chart for the Crash Data Merging 

 

3.2.2.2.2 CAR System Additional Road Data 

Once the FDHSMV crash data were merged successfully, an additional process was 

undertaken to add the traffic and additional road data from the CAR database. The augmented 
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data file had additional geometric and traffic characteristics of the crash location. These include 

aadt,  average truck volume percent, managing district, crash lane (as interpreted by the safety 

office, from the narrative/collision diagram), distance to the node (intersection center), Roadway 

surface (through lanes) width, first (closest to outside travel lane) shoulder width, Median width, 

and Skid Test Result number which are not available in the FDHSMV database.  

The number of approaches (legs) has been found to affect the safety performance of 

intersections (Bauer and Harwood, 1996). In order to investigate the effects of this attribute, the 

information was first extracted from one report and then merged with the intersection crashes in 

the CAR augmented file. The previously described Intersection Reference Rates report was 

downloaded for each of the three years of analysis (2002-2004). A Microsoft Excel® macro was 

written to convert the downloaded text file format with breaks by page to an Excel worksheet 

with county, node number, and number of approaches. This file and the CAR augmented test file 

were imported into database tables in Microsoft Access® format. Then the number of 

approaches was added (for intersection crashes only) to the CAR augmented file by the county 

and node number via a make-table query in Microsoft Access®. 

3.2.2.2.3 Final FDHSMV and CAR Crash Data Merge 

The FDHSMV and CAR tables in Access® were imported into SAS® software datasets. 

These datasets were sorted by crash report number and then using a MERGE statement, the two 

datasets were combined into one dataset by crash report number. An outer join was used to 

include all FDHSMV records plus all CAR records that had a match with a FDHSMV record. 

Crash record repetition was avoided by comparing the records present in the individual datasets 

and the merged dataset. This merge resulted in the amount of 120,421 complete crash records for 
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final analysis. This sample is more appropriate for analysis of single involvements per crash 

when compared with the 60,221 involvements for the year 2004 (which represents less than 

30,000 crashes). In addition, there were approximately 28,437 CAR records not found in the 

FDHSMV data which amounted to approximately 13% of the total (28,437/215,898) records. 

However, these data did not include enough driver information for sections 1 and 2 and thus, not 

included in the final analysis. This discrepancy between the crash records in both databases is a 

concern that is being addressed by the Traffic Records Coordinating Committee of the FDOT.  

3.2.2.3 Crash Data Filtering for High-speed Multilane Arterials 

3.2.2.3.1 Crash Data Filtering Process 

The crash record filtering process was effective in revealing some issues with the full 

access control road list and records were not imported correctly in Microsoft Access®. After 

these discoveries, this process (see Figure 3-6, page 66) was restarted to make sure all crashes 

were present. First, non-state road crashes were excluded. Then, the variable rdaccess was made 

available for the CAR crashes, therefore facilitating the process of excluding crashes on limited 

access roads. The crashes with rdaccess=1 (full-access control) were excluded. 

Another check consisted of a subset of all crashes on one-way high-speed (≥40 mph) and 

multilane (≥4 lanes) roads to check if these crashes were indeed one-way. Since one-way roads 

tend to be in urban areas with lower speed limits, a small sample was expected. The Video Log 

outputs were used in this stage. Only 19 out of 436 (4.3%) records were two-way, the rest were 

one-way with less than four lanes on one side of the road, except for two cases in Miami. Due to 

the sparseness of these data and the different road conditions when compared to the high-speed 

multilane arterials, crashes on one-way roads were excluded from the analysis. 
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A list of freeway or limited access roads was obtained from a report in the RCI database. 

This list was then verified against the road1 and road2 fields in the FDHSMV in a partly 

automated fashion using several excel spreadsheets with crash report numbers. Next, groups of 

crashes in very high-speed (>65 mph) roads were examined to exclude those with a limited 

access facility. Many crashes (almost 4,000) not in the initial exclusion due to missing values in 

the road1 and road2 fields were captured this way. 

Finally, the remaining arterial road crashes were filtered to include only the crash records 

with num_lane values equal or greater to 4 and speed_limit values greater or equal to 40 mph. 

The final analysis included crashes at intersections, influenced by intersections, non-intersections 

and driveways using the site location variable. Driveway-related crashes were included in the 

analysis as they are more common in urban arterial arterials and thus, an important part of this 

investigation. Also, crashes were no vehicle was involved were excluded from the analysis by 

filtering total number of vehicles (>=1). This was only a precautionary measure since no driver 

involvements were expected in a crash not involving vehicles. 
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Figure 3-6: Process Chart for the Crash Data Filtering 
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3.2.2.3.2 Crash Data Filtering Crosscheck 

After excluding the crashes on full-access control roads independent processes shown in 

the last three diamonds of Figure 3-6, page 66, served as crosschecks for crashes without the 

rdaccess variable (FDHSMV crashes that were not in the CAR system). The limited access 

facilities were excluded using the road1 and road2 variables, showing an excellent agreement 

with the rdaccess variable for the crashes with CAR records. Additional very high-speed (>65 

mph) crashes were examined and only a small portion (93 out of 4,075 records) was excluded. 

This process allowed crosschecking of the previous filtering process. Although crashes without 

CAR records will not be included in the regression analysis, this initial filtering was useful in 

obtaining a second dataset with non-state high-speed multilane roads for future use. 

3.2.3 Variable Setup  

Before preliminary analysis, other variables interactions were derived from the original 

data. These included speed ratio, an indicator of speeding which consists of the ratio of the 

estimated speed divided by the speed limit. Another important interaction is the average traffic 

volume divided by the number of lanes. The adt per lane variable normalizes the volume to make 

different high-speed multilane arterials comparable. Previous research of signalized intersections 

on arterials using Generalized Estimating Equations (GEEs) statistical models for crash 

frequency analysis showed that the total average daily traffic per lane was the best representation 

of traffic volume (Wang et al., 2006). 

Many of the crash report data fields that become variables in the analysis have a large 

amount of categories. Some are ordered according to the specific requirements of law 



68 

enforcement in addition to those of the FDOT. Since the data may be sparse for many of the 

cells, after the categorical data analysis, some categories for dummy variables were combined. In 

addition, some variables suffered category rearrangements for them to have appropriate base 

categories for the injury severity analysis.  

In addition, initially one-way contingency tables and other univariate descriptive statistics 

were used to assess the range of values in the database. Almost all of the variables had 

acceptable (valid) ranges. Extraneous values were investigated and removed as necessary to 

avoid outlier influence in the models. Overall, the quality of the data available was acceptable for 

the complete records. 

 

3.3 Preliminary Analysis for Categorical Data 

In order to find the basic relationships between groups of nominal and ordinal 

(categorical) variables, the contingency tables are utilized to summarize effectively the observed 

frequencies of each of the variables collected in crash reports and those derived from the report 

and other sources. The results of the simpler two-way contingency tables indicate the most 

significant associations (statistical dependence) between sets of individual variables. The 

variable of interest is driver injury severity. The contingency table analysis was performed using 

the SAS program PROC FREQ, which produced the tables of each variable with the statistical 

tests and measures of association to be discussed in the following section. 
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3.3.1 Contingency Table Independence Analysis 

As part of the variable pre-screening process chi-square tests for independence were used 

to find the variables with statistically significant dependence to driver injury severity. This does 

not imply causality; it is a tool to pre-select a group of important driver, road, vehicle, and 

environmental variables to be included in the statistical model analysis. A two-way contingency 

table records counts of two characteristics, say X and Y, that can then be analyzed as shown in 

Table 3-1. 

 

Table 3-1: Two-way Contingency Table Structure 

 Y  

X 1 2 Total 

1 11n  12n  ⋅1n  

2 21n  22n  ⋅2n  

Total 1⋅n  2⋅n  n  

 

 

The Pearson chi-square statistic for two-way tables involves the differences between the 

observed and expected frequencies, where the expected frequencies are computed under the null 

hypothesis of independence. The chi-square statistic is computed as follows: 
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When the row and column variables are independent, χ2 has an asymptotic chi-square 

distribution with (R-1)(C-1) degrees of freedom. For large values of χ2, this test rejects the null 

hypothesis in favor of the alternative hypothesis of general association. In addition to the 

asymptotic test, PROC FREQ computes the exact chi-square test; however, this was not needed 

for the larger samples used in this investigation. Later, additional variables found to be important 

by previous research will be tested to find out possible confounder effects. In addition to the chi-

square test of independence, the contingency coefficient is used as a tool to select variables with 

the strongest associations to driver injury severity. 

3.3.2 Non-parametric Contingency Coefficient Measure of Association 

Besides testing for independence, the contingency table analysis provides another useful 

tool to compare the relative strength of each variable relationship to the response, in this case the 

injury severity level. Measures of association serve the function of a correlation coefficient, 

some of which have the desirable properties of bound values (absolute: 0 to 1 or with sign: -1 to 

1) and comparability (Kendall and Stuart, 1979).  The Pearson’s coefficient of contingency is 

perhaps the oldest measure used for non-numerical (nominal) variables. It was derived from the 

chi-square statistic of the independence test: 

            2

2

χ
χ
+

=
n

P   (3.2) 

The contingency coefficient has the advantage of normalizing by sample size to examine the 

degree of the association between two categorical variables. Since the contingency coefficient is 

based on the chi-square distribution, it varies by its degrees of freedom which are determined by 

the number or rows and columns in the table. For larger degrees of freedom, the chi-square 
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Probability Distribution Function is flatter and therefore larger values are expected for the same 

significance level. Therefore, the contingency coefficient does not have a bound and cannot be 

compared among different size tables. The attainable upper limit of P depends on the number of 

rows and columns. However, this measure can compare nominal and ordinal variables. 

 

3.4 Preliminary Analysis for Continuous Variables 

The first part of the preliminary analysis consisted of verifying the descriptive statistics 

using PROC UNIVARIATE in SAS. This included checking the crash reports for abnormally 

high of low values for the median width in the final analysis, which could be easily checked 

using the Google Earth™ satellite imagery application. This in conjunction with the data 

preparation cross-verification process was performed to ensure that records with invalid values 

were not entered into the analysis.  

For variables with continuous distributions, correlation values were used to compare the 

relationships between different continuous variables and the driver injury severity variable. The 

Pearson product-moment correlation is a parametric measure of association for two variables. It 

measures both the strength and direction of a linear relationship, which is one of the 

characteristics of the final logistic regression analysis. The value of the sample Pearson product-

moment correlation is defined as follows: 
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If one variable X is an exact linear function of another variable Y, a positive relationship exists if 

the correlation is 1 and a negative relationship exists if the correlation is -1. If there is no linear 
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predictability between the two variables, the correlation is 0. If the two variables are normal with 

a correlation 0, the two variables are independent. However, correlation does not imply causality 

because, in some cases, an underlying causal relationship may not exist. The use of this 

correlation is limited to a few variables since most of the crash-related factors in the database are 

described qualitatively rather than quantitatively. 

 

3.5 Regression Modeling 

The use of binary logit (logistic) regression is well suited for crash and driver injury 

analysis, as shown in previous research discussed earlier.  The binary response variable is the 

driver injury severity, which takes the values severe (response value=1) vs. non-severe (response 

value=0). Recall that the driver severe crash involvement is defined as those that resulted in an 

incapacitating or fatal injury. The logistic regression in this case models the probability of a 

driver sustaining severe injury given that he/she is involved in a reportable crash. The logistic 

regression model takes the form shown in Equation 3.4 as follows:  
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where: 

pi = )( iii Xyyprob =  is the response probability , and  yi  is first ordered level of y; 

α = intercept parameter; 

β ′= vector of coefficients to be estimated; and  

iX = vector of independent variables. 
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This is a linear additive model were the vector of independent variables are summed to 

obtain a total predicted probability of an event (success). The maximum likelihood estimators of 

the parameters yield the vector of coefficients. Additional details about the maximum likelihood 

estimation, the statistical significance tests and confidence intervals can be found in Hosmer and 

Lemeshow (2000). 

3.5.1 Model Building and Assessment 

The categorical variables were coded using the reference cell method, were the lower 

value was the base for the coefficient and odds ratio calculations. For the large amount of model 

fitting required for this investigation, the stepwise method for variable selection was selected. 

This is an acceptable method when properly used and permits fitting many models with fewer 

resources. For the model building, the stepwise variable selection available in PROC LOGISTIC 

was used to select the appropriate variables with 95% confidence levels limits for variable entry 

and removal. Once an appropriate main effects model was fitted, consideration was given to 

possible interactions. In all cases, PROC CORR was used to find the highest Pearson correlation 

factors among variables available in the crash involvement data. Various combinations of first 

order interactions were tested. The results were varied and for some models which resulted in 

poor goodness of fit (Homer-Lemeshow test p-value less than 0.05) or numerical problems 

appeared. The competing models were developed using the following steps: 

1) Preliminary analysis of categorical and continuous variables. 

2) Continuous variable categorization using data mining bin optimization techniques. 

3) Stepwise method for logistic regression main effects selection. 
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4) Check for Akaike Information Criterion (AIC) differences in the intermediate steps 

detail for each model. 

5) Use Pearson/ Spearman correlations and scientific inference to test for first order 

interactions. 

6) Additional stepwise regression for interaction selection (where necessary). 

For better model fitting results, the detail option of the stepwise method was used to examine the 

AIC for each intermediate step, to have a secondary comparison method similar to the best 

subsets method. For the larger models, some variables that fulfilled the 95% significance levels 

of the stepwise method, did not have justifiable (>10) differences in the AIC statistic. In such 

large models this resulted in some over fitting, therefore the stepwise variable selection limits 

were more stringent for the larger sample models. It was decided to use 98% significance levels 

for the six road entity and traffic control models. After all the models were developed, the model 

interpretation, assessment and comparison processes were performed as detailed in the following 

sections. 

3.5.2 Interpretation of Coefficients using Odds Ratios 

One of main advantages of the logistic regression model is the ease of interpretation of 

the estimated parameters. This is achieved by calculating the odds ratio for each of the 

coefficients in the model. This statistic represents the probability of certain outcome given a 

fixed effect value, relative to a base value. The estimated odds ratio is obtained by 

exponentiation of the logit difference, as shown in Equation 3.5: 

             )](ˆexp[),(ˆ
1 babaRO −×= β  (3.5)  
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If the variable is binary and coded (0, 1), this reduces to ]ˆexp[ˆ
1β=RO , the odds ratio estimates 

and their 95% confidence intervals are computed by the SAS software (SAS, 2007). 

The interpretation of this variable is straightforward. For continuous variable, the odds 

ratio represents the change in probability of certain outcome by one unit increase of the effect, 

given that every other parameter is fixed. For categorical variables, it represents the probability 

of certain outcome when the status (category) of the effect changes relative to the base value, 

given that every other parameter is fixed. 

3.5.3 Model Assessment 

After all of the competing models were developed, the models were investigated in terms 

of both the statistical fit and the resulting coefficients. The goal was to obtain a model (or set of 

models) that strikes a balance between fit and simplicity (parsimonious principle). To achieve 

this, we must guard against either over fitting or losing important crash involvement factor 

information in the sake of simplicity. Several criteria have been developed to help choose a 

model or set of models, some particularly suited for logistic regression of binary data. The 

Akaike Information Criterion (AIC) is used to identify the best approximating model among a 

class of competing models with different numbers of parameters. The AIC has the form shown in 

Equation 3.6: 

            kMLAIC *2*2 +−=   (3.6)  

where: 

ML = maximum likelihood (log-likelihood); and 

k = the number of variables in the model. 
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This parameter has the desirable property of being an efficient model selection criterion for large 

samples. In other words, the errors made by predicting the response variable using the model 

selected by AIC approaches the error of the best possible theoretical model asymptotically (as 

the sample gets larger).  In general, if values of the AIC between two models differ by more than 

10, the model with larger AIC has considerably poorer fit, and would normally not be considered 

further (Simonoff, 2003). 

In addition, the performance of the model itself must be assessed. To achieve this in the 

case of the logistic regression model, a closer look at both calibration and discrimination is 

warranted. Fortunately, the SAS® software used for the multivariate binary logit modeling has 

various summary measures of goodness of fit. A popular overall goodness of fit is the Hosmer-

Lemeshow statistic. This test measures the calibration of the model by grouping the observed 

and expected frequencies within each decile of risk. Then the resulting contingency table is 

tested for the chi-square function of variable independence to prove that the model has a good fit. 

In addition the Receiver Operating Characteristics (ROC) curve has valuable information for 

discrimination purposes. In addition, the areas under this curve of 1 minus Specificity (x-axis) 

vs. Sensitivity (y-axis) are used to determine how good the probability of correct classification is. 

Both of these measures plus the other traditional measures of fit better describe the model’s 

performance (Hosmer and Lemeshow, 2000). 

The estimated covariance matrix of the logistic model can point to possible 

multicolinearity problems in the data. These were examined and as a result some problematic 

variables were eliminated, with significant improvements in the models goodness of fit.  
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3.5.4 Relative Variable Significance 

The type III analysis available as part of the PROC LOGISTIC output tests the 

significance of the effect of each factor added to the model containing all other factors; that is, 

to find the proportional or relative contribution of the factor to the explanation of the dependent 

variable (Le, 1998). The type III chi-square value for a particular variable is the difference 

between the generalized score statistic for the model with all the variables included and the 

generalized score statistic for the model with this variable excluded. The hypothesis tested in this 

case is the significance of this variable given that all the other variables are in the model. The 

small p-value indicates that the effect of this variable is highly significant (SAS, 2007). By 

utilizing the Type III test, we can compare the most important variables found in each statistical 

model to derive relationships between the factors affecting injury severity and the road, traffic, 

driver, and possible environmental differences found at each of the road entities represented by 

each statistical model. 

 

3.6 Driver Involvement Modeling by Road Entities and Crash Types 

The model series is divided into two recognized crash analysis schemes: by road entity 

and by crash type. The first requires analysis of crash data using different combinations of road 

entities; i.e. location (segment, intersection) and traffic control (signalized, unsignalized). To 

better recognize the different crash mechanics of involvements occurrence at different locations 

under different traffic control, the analysis tree shown in Figure 3-7, page 78, depicts the six 

different model schemes tested by using statistical modeling of severe vs. non-severe driver 

injury crash involvements. The six models are: all involvements, all intersections, signalized 
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intersections, unsignalized intersections, pure segment, and segments (pure segments plus 

unsignalized intersections). The relationships between the data subsets used in the first six 

models are represented by the lines connecting the leaf elements. The broken lines represent that 

the unsignalized intersections were tested both as part of the intersections and segment models 

and as a separate model. By testing the reliability of each model and comparing it to the others, 

additional knowledge was acquired about the best way to model crash data for the high-speed 

multilane arterials. In addition, the comparison of the information about the contributing factors 

for each model will help recommend measures directed to reducing the severe crashes. 

 

 
Figure 3-7: Driver Injury Severity Analysis Tree by Road Entity  

 

The second severity crash analysis scheme uses different samples by crash type combined 

with the road entities to confirm and enhance the results of the first analysis. The crash collision 

type strata are shown in Table 3-2, page 79. For each specific crash type and using the previously 

Overall model (1) (all involvements) 

 

All Intersections (2) Segment (4) 
 

Pure segment (5) Signalized Int. (3) 
 
 
 
 
 
 
 

Unsignalized Int.  

(included in #2) 
 

Unsignalized Int.  

(included in #4) 
 
 

Unsignalized Int. (6) 
 
 
 
 
 



79 

designed road entities, a more accurate subset of crash involvements on high-speed multilane 

arterials can be investigated. This is expected to provide additional information not found in the 

first analysis by road entity. Also, possible correlation effects between crash types and driver 

injury severity can be addressed at this point. Analyzing crash driver involvements using a dual 

strata classification is intended to provide a more clear picture of the contributing factors in 

terms of driver behavior and vehicle characteristics as well as other environmental and road 

characteristics that affect the likelihood of a crash occurring and the level of injury as a result of 

such event.  

 

Table 3-2: Driver Injury Severity Analysis Matrix by Crash Type and Road Entity 

Entities/ Signalized Unsignalized Segments plus 
Unsignalized 

Purely 
segment 

Overall 
Model Collision type 

Rear-End Model 1 Model 2 Model 3 Model 4 Model 5 
Angle Model 6 Model 7 Model 8 Model 9 Model 10 
Left Turn Model 11 Model 12 Model 13 Model 14 Model 15 
Fixed Object Model 16 Model 17 Model 18 Model 19 Model 20 

 

 

3.7 Regression Goodness of Fit Comparison 

The model comparison is very important to the objectives of this research. A great deal of 

effort was invested in data preparation and model fitting such that the different models would 

have equivalent variables and variable selection process that could be compared. Although 

individual models were flexible, the total variables tested for all of the models were the same. 

More than other measure of goodness of fit was used for model comparison. In addition, other 

factors were considered when comparing the models. 
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As explained in Chapter 2, an acceptable driver injury severity model should comply with 

the following principles: 

• The models should have acceptable goodness of fit. 

• The coefficients must be robust (statistically significant) to an acceptable p-value. 

• The coefficient values (signs) for the contributing factors should agree with scientific 

principles and previous research results. 

These principles guided the process of model comparison in this investigation. The goodness of 

fit measures for calibration (Hosmer-Lemeshow) and discrimination (ROC curve) were used for 

comparison. In addition, the AIC statistic and the R2 value were considered. The coefficient 

robustness (p-value) was made more stringent for the models with larger sample sizes to 

compensate for this advantage (and avoid over fit) in order to have comparable results. Both the 

quantity and the relative importance of the coefficients for each model were examined in the 

comparison. Finally, the coefficient values (and standard errors) were examined in light of the 

scientific principles and previous research results. 
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CHAPTER 4.  EXPLORATORY ANALYSIS 

4.1 Significant Factors of Categorical Data Analysis 

The first part of the analysis used crash, road vehicle, driver and environmental 

characteristics for each driver involved in a crash. The purpose of this is to find the major factors 

associated with increased injury caused by a crash. This analysis attempts to explain the 

likelihood of severe injury. Part of this analysis of each crash occurrence will focus primarily on 

the crash, road and environment characteristics. 

The results of the preliminary two-way analysis of all of the crash involvements indicated 

rejection of the null hypothesis of statistical independent variables (against driver injury severity) 

for all of the initial 33 variables of interest. Among the variables associated with driver injury 

severity, first safety equipment (seat belt use), ejected and first harmful event (type of collision) 

had a significant effect. Other variables hold relatively good associations, although no direct 

comparison may be possible due to differences in the degrees of freedom, as explained 

previously. In addition there are some variables that are not as strongly associated, but may 

become important confounding effects. 

Additional analysis of variable interactions is possible by using three-way contingency 

tables, where there is a ‘control’ variable. This allows close examination of the trends of certain 

events or characteristics (such as driver injury severity) with other variables. However, the 

analysis cannot go any further into variable interaction. Even with large sample sizes, at this 

point some expected cell values become too low to have interpretative value. On the other hand, 

statistical regression models provide more complete interpretative and prediction power, 
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although with an error margin. The contingency table analysis is therefore the basis to find 

significant statistical relationships as well as a tool to interpret specific variable behavior in a 

sample. 

There is fundamental difference in crash involvements between intersections and road 

segments. To investigate the validity of this claim with the data under study, three-way 

contingency tables were analyzed using the Cochran Mantel Haenszel (CMH) general 

association statistic. Each set of tables control the site location type (intersection or non-

intersection crashes) for each of the 33 driver, road, vehicle, crash and environmental variables 

against the injury severity level. The results of this analysis, to be shown in both Table 4-2, page 

85, and Table 4-10, page 85, indicate a strong general association (p-value <0.001) for 29 

variables in the non-intersection and 25 for the intersection and intersection-related 

involvements.  

The preliminary two-way statistical analysis was divided into separate groups of 

intersection and non-intersection crashes. This analysis includes crashes occurring on Florida’s 

state roads. A total of 147,866 involvements occurred during the year 2004. This total was 

filtered down to 106,746 involvements not on interstates, freeways or expressways and only 

those identified by the Site Location ID as: Not at intersection, Intersection or Influenced by 

intersection. Those involvements occurring at intersections or related to intersections numbered 

64,972 and those occurring at segment sections of the road amounted to 41,774. Crashes 

occurring at other types of site location were not included in this analysis. Further analysis on the 

individual contingency tables for intersection and non-intersection crashes will be stratified to 

find important relationships changes for the in-depth analysis stages. A summary of the total 

driver’s involvements by injury severity level is shown in Table 4-1, page 83. This total was later 
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reduced to 60,221 crash involvements in high-speed (≥45 mph) multilane (≥4 lanes) roads for 

use in the exploratory regression analysis. 

 

Table 4-1: Groups of Driver Crash Involvements on State Roads in Florida during 2004 

Site Location ID 
Driver Injury Level 

Total Percent 
PDO Possible 

Injury 
Evident 
Injury 

Incapacitating 
Injury 

Fatal 
Injury 

Non-Intersection 26433 7688 5078 2180 395 41774 39.13% 
Intersection (all types 

of traffic control) 29509 10692 7850 3050 250 51351 48.11% 

Influenced by 
Intersection 9531 2297 1337 417 39 13621 12.76% 

Total  65473 20677 14265 5647 684 
106746 100.00% 

Percent 61.34% 19.37% 13.36% 5.29% 0.64% 
 

 

The statistics for the state roads in Table 4-1 show that 57.7% of the fatal injuries occur 

on road segments, while 61.4% of the intersection (or intersection-related) involvements resulted 

in incapacitating injuries. These results suggest that the severe crash group brings a more 

complete picture, showing that the majority of the severe injuries result from involvements at or 

related to intersections. In general, intersection and related to intersection crashes are the 

majority (61.9%) of 2004 driver involvements. This underscores the importance of examining 

the intersection crashes. However, since this analysis deals with arterial corridors in a systematic 

fashion the relationship between intersection crashes and the surrounding environment is very 

important. A comparison between the contributing factors between intersection (including 

intersection-related) and non-intersection crashes is a first step to shape the rest of the analysis.  

In addition to site location types, crash contributing factors usually change according to 

the type of road in which it occurs. General association CMH statistics were tested for the 



84 

candidate variables vs. injury severity when controlling for Urban ID, Lane Group, Speed Limit 

Group and Traffic way Character (straight or curve section). The results of this analysis indicate 

strong general association (p-value<0.005) across all the variables, except for month, similar to 

the previous results. When different types of roads are examined, preliminary analysis suggested 

a difference among the relationships related to driver involvements and injury severity. 

4.1.1 Analysis of Non-intersection Crashes  

4.1.1.1 Non-intersection Cashes in All Non-limited Access Roads 

The group of non-intersection crashes was organized in contingency tables to test 

whether each variable is statistically independent. The variables that showed dependence were 

then ordered by minimum number of rows or columns in their corresponding tables to make 

possible some comparison of their relative strengths of association (see Table 4-2, page 85). 

Each of the variables listed was cross tabulated against the five level injury severity variable 

previously explained in Section 2.1.2. 

Most parameters showed statistically significant dependence with 29 out of the 33 

variables tested. These variables can then be used for the non-intersection model fitting detailed 

in the next sections. Variables that appear shaded have stronger associations (measured by 

contingency coefficients) among similar size tables. Additional variables with weaker 

associations, yet with significant statistical dependence are also considered. These variables are 

road and driver characteristics that may be found to have interaction effects, as shown in the 

stratification analysis (see Table 4-7, page 90). 
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Table 4-2: Preliminary Analysis for Non-intersection Crash Driver Involvements (N=41,774) 

Variable 
Contingency 
Coefficient DOF Min (r,c) Cramer's V chi-square  p-value 

Ejected 0.323 4 2 0.3413 4866.54 <.0001 
Off/On Roadway 0.1965 4 2 0.2004 1678.019 <.0001 
Speeding ID 0.1445 4 2 0.146 890.6299 <.0001 
Urban ID 0.1298 4 2 0.1309 715.5656 <.0001 
Alcohol Drugs 0.1239 4 2 0.1249 651.8123 <.0001 
Traffic way Character 0.1087 4 2 0.1094 499.6669 <.0001 
Vehicle Fault Code 0.1047 4 2 0.1052 462.5921 <.0001 
Gender 0.0934 4 2 0.0938 367.6913 <.0001 
Lighting Condition 0.0654 4 2 0.0654 178.4041 <.0001 
Undivided Highway 0.0504 4 2 0.0505 106.4763 <.0001 
Bad Weather 0.038 4 2 0.038 60.4578 <.0001 
Crash Damage (Vehicle) 0.3139 8 3 0.2337 4564.618 <.0001 
First Safety Equipment 0.3025 8 3 0.2245 4209.063 <.0001 
Vehicle Type (41,225) 0.2925 8 3 0.2163 3856.386 <.0001 
Location Type 0.2062 8 3 0.149 1854.72 <.0001 
Speed Limit Group 0.1697 8 3 0.1218 1239.117 <.0001 
Driver Action 0.1161 8 3 0.0827 571.0572 <.0001 
Type of Shoulder 0.1108 8 3 0.0789 519.5882 <.0001 
Road Surface Condition 0.0195 8 3 0.0138 15.8208 <.0001 
Lane Groups 0.1142 12 4 0.0664 551.828 <.0001 
First Contributing Cause 0.0841 12 4 0.0488 297.8924 <.0001 
Time Group 0.0779 12 4 0.0451 255.3446 <.0001 
Race 0.0602 12 4 0.0348 152.0791 <.0001 
Location on Roadway 0.2064 16 5 0.1055 1859.057 <.0001 
First Harmful Event 0.1682 16 5 0.0853 1216.571 <.0001 
Number of Lanes 0.1401 20 5 0.0707 836.3189 <.0001 
Vehicle Movement  0.116 32 5 0.0584 570.2234 <.0001 
Day of Week 0.0542 24 5 0.0272 123.2607 <.0001 
Driver Age Group 0.0444 28 5 0.0222 82.5573 <.0001 

 

 

Examples of cross tabulation tables used in the categorical data analysis are presented 

next. Some of the variables with the highest chi-square statistics for statistical independence and 

contingency coefficients were selected taking into account the perceived importance in the injury 
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severity analysis. Driver ejection and land use had both strong correlations and have been found 

significant in previous injury severity analyses. 

 

Table 4-3: Driver Ejection and Injury Severity Cross Tabulation Table for Non-intersection Involvements 

Ejected Driver Injury Level 
Total Percent Frequency 

PDO 
Possible 
Injury 

Evident 
Injury 

Incapacitating 
Injury 

Fatal 
Injury (Row Percent) 

No 
26305 7467 4505 1773 223 

40273 96.41% 
(65.32) (18.54) (11.19) (4.40) (0.55) 

Total or 
partial 

128 221 573 407 172 
1501 3.59% 

(8.53) (14.72) (38.17) (27.12) (11.46) 
Total 26433 7688 5078 2180 395 

41774 100.00% 
Percent 63.28% 18.40% 12.16% 5.22% 0.95% 

 

 

From the cross tabulation shown in Table 4-3, it can be seen that driver partial or total 

ejection contributed to 18.7% of the incapacitating injuries and 43.5% of the fatal injury cases. 

Meanwhile only 3.59% of all crashes had an ejection event, which suggests that ejection 

significantly contributes to driver severe injury.  Even though this event is technically a post-

crash event, its inclusion in the model will measure proxies of crash precursors that lead to 

ejection, for example, the seat belt use.  The nature of this relation for high-speed multilane roads 

can be an important topic for further research due to the significance of this variable in all the 

injury severity models. 
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Table 4-4: Urban Land Use and Injury Severity Cross Tabulation Table for Non-intersection Involvements 

Urban_ID Driver Injury Level 
Total Percent Frequency 

PDO 
Possible 
Injury 

Evident 
Injury 

Incapacitating 
Injury 

Fatal 
Injury (Row Percent) 

No 
12163 4005 2904 1466 327 

20865 49.95% 
(58.29) (19.19) (13.92) (7.03) (1.57) 

Yes 
14270 3683 2174 714 68 

20909 50.05% 
(68.25) (17.61) (10.40) (3.41) (0.33) 

Total 26433 7688 5078 2180 395 
41774 100.00% 

Percent 63.28% 18.40% 12.16% 5.22% 0.95% 
 

 

The urban land use was another significant association with the driver injury severity for 

multilane arterial roads. The cross tabulation in Table 4-4 shows that while the involvements 

were almost equally distributed between urban and rural areas, 82.8% of the fatal injury 

involvements and 67.2% of the incapacitating injuries occurred in rural areas. The land use 

classification is an important design parameter for arterial roads, which tend to have different 

design standards, such as drainage, shoulder and lane widths for rural and urban roads. Also, 

traffic speed is generally higher in rural sections than in urban sections. These important 

differences will likely have an impact on the crash mechanism and its outcome. 
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Table 4-5: Variables by Degree of Association to Injury Severity for Non-intersection Crashes 

Degree of 
Association Driver-related Environment 

characteristics 

Strong 

Roadway 
characteristics 

Ejected 

No strong relationships 

Off/On Roadway 
Speeding Urban / Rural 
Alcohol Drugs Traffic way Character 
Crash Damage 
(Vehicle) Location Type 
First Safety Equipment Speed Limit Group 
Vehicle Type  Type of Shoulder 
Driver Action Number of Lanes 
First Contributing 
Cause Location on Roadway 
First Harmful Event   
Vehicle Movement    
Race   

Weak 

Gender Day of Week Undivided Highway 
Driver Age Group Time Group   
Vehicle Fault Code Road Surface Condition   
 Bad Weather   
  Lighting Condition   

 

 

The stronger associations include only driver-related and roadway characteristic variables 

(see Table 4-5). In contrast, the weaker associations are mostly related to the environmental 

characteristics at the time of the crash. This does not negate the influence of the environment on 

crash occurrence, but it is understood that these variables may interact with the others to affect 

the injury severity. For each one of these strata, general association CMH tests were used to 

determine the best candidates for interaction among the weaker associations shown in Table 4-5. 

Driver’s gender and vehicle fault code (driver at fault) were included in this analysis and are 

suspected to be confounders. 
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4.1.1.2 Non-intersection Crashes in Multilane Non-limited Access Roads 

The group of non-intersection crashes (41,774 driver involvements) was further stratified 

by the road types. Urban and rural roads were classified by the number of lanes (two-three, four 

or more), speed limit (less than 40 mph and greater than 40 mph) and geometry of section 

(straight or curve). The subgroups are then examined for differences in their relationships with 

injury level. The group of crash involvements used in this section is summarized in Table 4-6. 

The analysis for two-three lane roads is not included here since these are not a main part of the 

investigation. The analysis was applied for roads with four or more lanes in rural/urban area and 

straight/curved sections. The resulting groups show the low driver crash involvement frequency 

for the curves of arterial roads. A total of 31,686 non-intersection driver crash involvements 

during 2004 were obtained for the four or more lane roads (no interstate or expressway).  

 

Table 4-6: Non-intersection Driver Crash Involvements by Road Characteristics 

Road section 
horizontal alignment 

4 or more Lanes 

Total Percent Rural Urban 
<40 
mph 

>=40 
mph 

<40 
mph 

>=40 
mph 

Straight  817 13374 4323 12062 30576 96.50% 
Curve 30 599 156 325 1110 3.50% 
Total 847 13973 4479 12387 31686 100.00% 
Percent 2.67% 44.10% 14.14% 39.09% 

 

 

The general association (CMH) analysis by road characteristics was performed. If the p-

value of the CMH statistic was less than 0.05, the variable has a statistically significant general 

association with driver injury severity when controlling for a given road characteristic. This non-

parametric statistic is appropriate for the variables under study. The results are shown in Table 

4-7, page 90, with marks on the variables with statistically significant general association. For 



90 

roads segments with four or more lanes, speed limit below 40 mph, not on interstates or 

expressways, the rural roads show a lower frequency, as rural multilane roads tend to have 

higher speed limits than their urban counterparts. Only time group shows significant association 

with the other contributing factors when controlling for the weaker variables. This follows the 

trend of crashes in rural roads being related with more interactions from environment-related 

variables. For the urban low speed roads with four or more lanes, however, all the significant 

interactions are driver-related variables. In the lower speed roads, undivided highway has high p-

values, which suggests no significant interaction by this road characteristic. Gender has an 

important interaction with the other factors. 

 

Table 4-7: Variables with Significant Association between Injury Severity and Characteristics in Roads with 
4 or More Lanes (Non-intersections) 

Variable tested 
(general association) 
against injury severity 

4 or more Lanes Straight 
Sections 4 or more Lanes Curve Sections 

Rural Urban Rural Urban 
<40 
mph 

>=40 
mph 

<40 
mph 

>=40 
mph 

<40 
mph 

>=40 
mph 

<40 
mph 

>=40 
mph 

Time Group X X   X 

Small 
sample 

X X 

No 
general 
assoc. 

Gender   X X X     
Undivided Hwy   X         
Weather   X   X     
Vehicle Fault Code   X X X X   
Lighting Condition   X   X X   
Driver Age Group   X X       
Month            
Day of Week   X         
Road Surface Condition   X         

 

 

In the case of higher speed roads with four ore more lanes, rural areas display most of the 

possible interaction with significant p-values (<0.05). Even though the environmental variables 

are predominant, driver factors and the undivided highway variable are also significant. Higher 
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speed rural (which are turning suburban with increased development) multilane roads tend to be 

important arterials which may carry local and non-commuter traffic. The mix of traffic and 

commercial development in urban areas increases the frequency and complexity of driver 

interactions, which may lead to a larger array of contributing causes that appear to interact for 

crashes occurring at these higher speed roads. The higher speed urban roads also display both 

environmental and driver-related variables with significant interactions; however, the urban 

straight sections seem to have less significant variables associated with injury severity when 

controlling for road characteristics. Some of the differences can be explained by the road and 

traffic characteristics. Urban roads are more likely to have median dividers and better drainage, 

reducing the interaction of undivided and surface condition variables. The driver age and day of 

week variables that were significant in the rural area and not in the urban area have more to do 

with traffic patterns and possibly car ownership, as explained previously.   

Additional analysis results not shown in Table 4-7, page 90, provide additional insights 

into the relationships for certain variables. In the urban area, other environmental variables such 

as speeding and time group lost interaction significance when compared to the rural roads. It 

seems that speeding at night and crash severity is less notable in the urban area. Possible reasons 

include higher intersection density (shorter straight road sections), higher urban traffic and 

possibly enforcement at night when compared to rural areas. An additional detail found in the 

analysis is that alcohol/drug involvement in urban area roads was not significantly associated 

with injury severity when controlling for time group and lighting conditions. This may indicate a 

more uniform injury severity risk due to use of alcohol/drugs for drivers involved in crashes in 

the urban arterials. It remains to be seen how this relationship is related to driver behavior in 

urban areas. The relationships between the road characteristics and injury severity have 
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important differences in rural and urban areas. Some of these variables, especially the 

alcohol/drug involvement proved to be challenging when developing the injury severity models. 

For the rural higher speed arterials curved sections, time group, lighting condition, and 

vehicle fault code show interactions. There seems to be more crash occurrence in the rural 

multilane arterials, with more factors that seems to be interacting with the more strongly 

associated factors to injury severity. These results suggests that rural road conditions are 

different, perhaps more variant from section to section, and tend to have a greater influence over 

some important factor’s association to driver injury severity. In additional three-way contingency 

tables it was found that safety equipment when controlling for gender seems to have a significant 

association with injury severity in many of the strata analyzed. This may indicate that driver 

behavior (choices) are generally affected by gender, although not as strongly as by age. 

 

Table 4-8: Driver Involvements by Severity for Non-intersection Crashes on Low-speed Multilane Roads 

Driver Injury Severity 

4 or more lanes low-speed (<40 mph) roads 
Rural Urban Totals Percent 

Straight Curve Straight Curve 
1  No Injury 558 19 3159 101 3837 72.04% 
2  Possible Injury 169 7 687 26 889 16.69% 
3  Non-Incapacitating 
Evident Injury 71 3 364 16 454 8.52% 
4  Incapacitating Injury 17 1 104 13 135 2.53% 
5  Fatal Injury 2 0 9 0 11 0.21% 
Totals 817 30 4323 156 5326 100.00% 
Percent 15.34% 0.56% 81.17% 2.93% 

 

 

To finalize the discussion of the preliminary analysis of non-intersection crashes, a brief 

look at the driver involvements by injury severity is warranted. For the curve sections of roads 

with four or more lanes, Table 4-8, page 92, indicates that drivers are less likely to be fatally 
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injured in the lower speed roads. This is expected because of the lower operating and crash 

impact speeds. Under these conditions, severe crashes on curves are less likely to happen, which 

may partially explain the fewer variables with general association significance. In the lower 

speed urban roads, time group remained the only important interaction, while in the rural areas 

the sample size was too small to effectively analyze the general associations. Time group in the 

urban area may reflect the changes in traffic during the day or risky behavior during the night. 

 

Table 4-9: Driver Involvements by Severity for Non-intersection Crashes on High-speed Multilane Roads 

Driver Injury Severity 

high-speed (>=40 mph) multilane (4 or more lanes) roads 
Rural Urban Totals Percent 

Straight Curve Straight Curve 
1  No Injury 8252 269 8042 194 16757 63.57% 
2  Possible Injury 2576 92 2238 54 4960 18.82% 
3  Non-Incapacitating 
Evident Injury 1684 141 1299 48 3172 12.03% 
4  Incapacitating Injury 722 70 442 24 1258 4.77% 
5  Fatal Injury 140 27 41 5 213 0.81% 
Totals 13374 599 12062 325 26360 100.00% 
Percent 50.74% 2.27% 45.76% 1.23% 

 

 

In contrast with the lower speed multilane arterials, Table 4-9 shows a disparity between 

the crash involvements at curves on high-speed roads in urban vs. rural areas, where there is a 

notable difference in the proportion of severe crashes. The rural area crashes are not only more 

frequent, but tend to be more severe. This was also the case for two-three lane roads (analysis not 

shown here) where the number of fatal injuries on curves for high-speed roads was actually 

higher than for the 4 or more lane roads, even though the total number of crashes is particularly 

larger for the multilane arterials. This should be examined further in the future.   
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While the total driver involvements in urban and rural high-speed multilane roads are 

almost balanced, the severity of these involvements is not. The proportion of incapacitating 

injury in rural areas is much higher (63%) than in urban areas (37%). When considering curve 

sections the ratio of these involvements in rural vs. urban roads is almost 3 to 1. A similar 

situation occurs with the fatal injuries, confirming this trend. In contrast, the non-severe (levels 

1-3) crashes are almost balanced for the rural and urban straight sections. The proportion of 

severe and fatal injury proportion (5.58%) was found to be higher than the 4.8% of a previous 

study using data from three counties in Central Florida (Abdel-Aty, 2003). It is closer to the 

statewide 2004-2006 average for total driver involvements (5.68%).  

It must also be noted that when general CMH associations between driver action and 

other variables indicates that at least for one level, the driver action has a relationship with the 

injury severity of the driver. With additional contingency tables analysis, the driver action, 

phantom or hit and run, may be correlated to the crash severity. However, the data collection for 

these crashes may be affected by the difficulties associated with the investigation of a crash 

involving a hit and run or phantom driver. Data collection and accuracy issues will be presented 

in a later section. 

4.1.2 Analysis of Intersection and Intersection-related Crashes  

4.1.2.1 Intersection and Intersection-related Crashes in All Non-limited Access Roads 

In this stage of the analysis, crashes occurring at intersections or within 250 ft of an 

intersection (influence area defined by DHSMV) for roads not classified as interstates or 

expressways are considered. The group of drivers involved in intersection crashes was higher 

than the non-intersection crashes occurring on state non-limited access roads during the year 
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2004. A total of 64,972 crash involvements were filtered from the 2004 crash records. Statistical 

tests of independence and measures of association for the possible contributing factors against 

the driver injury severity were computed using PROC FREQ, as previously mentioned. 

 

Table 4-10: Preliminary Analysis of Intersection and Intersection-related Crash Driver Involvements 
(N=64,972) 

Variable 
Contingency 
Coefficient DOF 

Min 
(r,c) 

Cramer's 
V chi-square  p-value 

Ejected 0.2517 4 2 0.2601 4395.2909 <.0001 
Gender 0.1331 4 2 0.1343 1172.3599 <.0001 
Vehicle Fault Code 0.1084 4 2 0.1090 772.5669 <.0001 
Site_Location_ID 0.1082 4 2 0.1088 769.3757 <.0001 
Rural/Urban 0.1035 4 2 0.1040 703.3809 <.0001 
Alcohol-Drugs 0.0787 4 2 0.0790 405.3195 <.0001 
Speeding 0.0666 4 2 0.0668 289.5686 <.0001 
FL Resident 0.03 4 2 0.0300 58.4906 <.0001 
Lighting Condition 0.0229 4 2 0.0229 34.1499 <.0001 
Crash Damage  0.276 8 3 0.2030 5355.8425 <.0001 
Vehicle Type (64,251) 0.2656 8 3 0.1948 4878.1981 <.0001 
First Safety Equipment 0.2148 8 3 0.1555 3143.4986 <.0001 
Driver Action 0.1213 8 3 0.0864 970.3235 <.0001 
Location Type 0.0948 8 3 0.0673 589.1209 <.0001 
Speed Group 0.0849 8 3 0.0603 471.7578 <.0001 
Type of Shoulder 0.0634 8 3 0.0449 262.1445 <.0001 
Road Surface Condition 0.0327 8 3 0.0231 69.5805 <.0001 
First Contributing Cause 0.1369 12 4 0.0798 1240.2653 <.0001 
Race 0.0548 12 4 0.0317 195.9059 <.0001 
Time Group 0.0372 12 4 0.0215 90.2161 <.0001 
Lane Group 0.0368 12 4 0.0213 88.2144 <.0001 
First Harmful Event 0.172 16 5 0.0873 1979.6119 <.0001 
Vehicle Movement 0.0993 32 5 0.0499 647.0668 <.0001 
First Traffic Control 0.0798 16 5 0.0400 416.4241 <.0001 
Driver Age Group 0.0751 28 5 0.0377 368.8244 <.0001 
Number of Lanes 0.055 20 5 0.0276 197.3873 <.0001 

 

 

The results of this analysis (see Table 4-10) illustrate some of the important differences 

when considering intersection crashes as`opposed to non-intersection crashes. The weather nor 

the off roadway variables are no longer significant at the 5% significance level. There were 
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additional differences in the measures of association for the rest of the variables. There is a much 

stronger association of driver injury severity with gender and vehicle fault code than on the non-

intersection crashes. Most roadway-related variables (off roadway, traffic way character, location 

type, speed limit group, type of shoulder, lane groups, location on roadway) loose association 

strength. . Meanwhile, two of the driver-related variables (speeding and alcohol-drugs) lost 

association strength. This suggests that the severity of driver injury resulting from crashes 

occurring at intersections tends to be more influenced by the drivers’ actions than non-

intersection crashes. 

 

Table 4-11: Ejected and Injury Severity Cross Tabulation Table for Non-intersection Involvements 

Ejected Driver Injury Level 
Total Percent Frequency 

PDO 
Possible 
Injury 

Evident 
Injury 

Incapacitating 
Injury 

Fatal 
Injury (Row Percent) 

No 
38849 12668 8502 2997 179 

63195 97.26% 
(61.47) (20.05) (13.45) (4.74) (0.28) 

Yes or partial 
191 321 685 470 110 

1777 2.74% 
(10.75) (18.06) (38.55) (26.45) (6.19) 

Total 39040 12989 9187 3467 289 
64972 100.00% 

Percent 60.09% 19.99% 14.14% 5.34% 0.44% 
 

 

The statistics from Table 4-11 indicate that ejection events at intersection or intersection-

related crashes (2.74%) are proportionally lower than for the non-intersection crashes (3.59%). 

When the ejection event occurs, intersection or intersection-related crashes injury outcomes 

comprise 38% and 13.5% of the fatal and incapacitating injuries, respectively. This suggests that 

in general crashes occurring at or near intersection are les likely to produce driver ejection and 

less likely to result in severe injury to those who are ejected from the vehicle. This comparison 

points out that crashes on segments are more likely to result in ejection, perhaps due to the single 
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vehicle off-roadway crashes, which tend to be severe. The differences in crash mechanisms at 

segments and intersections are evident; however, the ejection event is still a very important 

factor that is present in 18.3% of all of the involvements under analysis (intersection and non-

intersection).  

 

Table 4-12: Urban Land Use and Injury Severity Cross Tabulation Table for Non-intersection Involvements 

Urban_ID Driver Injury Level 
Total Percent Frequency 

PDO 
Possible 
Injury 

Evident 
Injury 

Incapacitating 
Injury 

Fatal 
Injury (Row Percent) 

Rural 
14589 5749 4254 1871 196 

26659 41.03% 
(54.72) (21.56) (15.96) (7.02) (0.74) 

Urban 
24451 7240 4933 1596 93 

38313 58.97% 
(63.82) (18.90) (12.88) (4.17) (0.24) 

Total 39040 12989 9187 3467 289 
64972 100.00% 

Percent 60.09% 19.99% 14.14% 5.34% 0.44% 
 

 

The land use might be considered the most encompassing factor that deals with traffic 

behavior and road design. As shown in Table 4-12, the urban involvements are higher than the 

rural involvements. The rural involvements have a higher proportion of severe injury. While 

41% of the involvements occur in rural areas, these represent 54% and 67.8% of the 

incapacitating and fatal injuries. Thus, similar to the segments, the rural sections of road present 

a serious trend of more severe injuries due to crashes. If the lower intersection density in rural 

areas is considered, there is some evidence of significantly higher severe crash rates at those 

rural intersections when compared to their urban counterparts. 
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Figure 4-1: Severe Involvements in Non-limited Access Roads by Driver Age and Road Entity 

 

In comparing the intersections and non-intersection environments, we consider two 

important factors of the drivers involved in crashes: age and gender. Figure 4-1 displays the 

distribution of severe involvements by driver age group divided in non-intersection and 

intersection events. While the non-intersection involvements exhibit an increasing proportion of 

severe injuries by driver age for the older drivers (65-79 years) and a reduction for the very old 

drivers (80 and above).  On the other hand, for the intersection crashes the proportion of severe 

injuries for the younger drivers are lower than middle age drivers (25-64 years), but the older and 

very old drivers showed a significantly higher proportion. These statistics suggests that older 

drivers are the group a greatest risk of severe injuries. Meanwhile, the other age groups seem to 

be at greater severe injury risk in road segments. 
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Figure 4-2: Severe Involvements in Non-limited Access Roads by Driver Gender and Road Entity 

 

Driver gender affects the crash outcomes because of both the physiological and 

behavioral differences between males and females. The statistics shown Figure 4-2 indicate that 

female have more involvements in both types of crashes for the severe injury crashes. This 

preliminary analysis suggests the theory that females are more likely to suffer serious injury as a 

result of a crash event. Additional analysis in Chapter 5 will show these relationships applied 

exclusively to high-speed multilane roads. 

The decreased association performance of the road-related factors should be analyzed in 

the context of the lack of intersection characteristics among the variables under analysis. As 

discussed in Section 2.4.1, additional intersection characteristics are needed to describe the 

safety performance of this road entity. Previous research by Abdel-Aty and Wang (2006) has 

shown that intersections present complex driving situations, especially in urban areas. Thus, 

drivers are required a greater degree of concentration and ability to traverse in a safely manner. 
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4.1.2.2 Intersection and Intersection-related Crashes in Multilane Non-limited Access Roads 

As shown in Section 4.1.2.2, the crash involvements were stratified for additional CMH 

statistic analysis by the number of lanes, urban/rural area and speed limit (high / low). 

Intersection crashes were not classified as being on a curve/straight section, due to the 

inadequacy of this general description to a point location such as an intersection. Moreover, the 

traffic way character variable lost about 80% of its previous measure of association value, which 

confirms that it is no longer an important variable for this particular crash type. In addition, 

traffic volume has been proven to be an important factor to predict crash severity in intersections, 

as previously discussed. This variable was not available in the original crash records databases, 

but was derived from additional databases and will be incorporated into the analysis Section 4.2. 

The result of the general association analysis for multilane road character combinations is 

presented next. 

The characteristics of intersections and its influence area in arterial corridors are more 

complex and require more information to describe the driver injury severity trends. In the case of 

four or more lanes road intersections in general more of the variables tested yielded significant 

interaction effect (association of two other variables when controlling for the variable being 

tested) This is probably due to more complex driving situations, as previously discussed. The 

most notable difference can be appreciated in Table 4-13, page 101, where the rural high-speed 

road intersection case shows a predominance of the driver-related variables interacting with the 

stronger variables (which are also mostly driver-related). These results suggest that driver 

behavior at these intersections may be of greater concern relative to other cases. 
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Table 4-13: Variables with Significant Association between Injury Severity and Characteristics in Roads with 
4 or More Lanes (Intersection and Intersection-related crashes) 

Variable tested 
(general association) 
against injury severity 

4 or more Lanes Straight Sections 
Rural Urban 

<40 
mph 

>=40 
mph 

<40 
mph 

>=40 
mph 

Alcohol Drugs X X X X 
Speeding X X X X 
Location Type X X   X 
Type of Shoulder X X X X 
Race   X X X 
Driver Age Group X X X X 
First Traffic Control X X X X 
Lighting Condition     X X 
Time Group X   X X 
Location on Roadway X   * X 
Resident X   * X 
Road Surface Condition X     X 

* Indicates a marginally significant general association (0.05 ≤ p-value ≤ 0.20). 
 

 

In addition, some important differences between the intersection and non-intersection 

crashes for the high-speed roads can be seen. The format in Table 4-14, page 103, clearly shows 

the contrasts between the different road entity characteristics. For crash involvements in rural 

areas, the non-intersection straight sections had more statistically significant variables than for 

the intersections crashes, contrary to the urban areas. The most commonly significant variables 

were driver age group, lighting condition and time group. These variables were proved important 

in the injury severity models, including some interactions. The matrix also shows the importance 

of driver characteristics for intersections crashes; gender and driver fault are associated for non-

intersection crashes.  

With regards to roadway characteristics, location type (land use) and type of shoulder are 

associated with driver injury severity at intersections, while undivided highway is significant for 

rural non-intersection crashes. The type of shoulder could be an indirect effect of the intersection 
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width (size), which will be discussed in Section 4.2. The higher operating speeds and design 

characteristics of rural segments certainly have an impact on the association between injury 

severity and highway divider. Road surface condition and weather are usually correlated and its 

use in the regression analysis was carefully tested to avoid multicollinearity. The day of week 

variable may correspond to trip purpose changes (weekday and weekend), and affect only 

straight sections in the rural areas.  

Straight segments are more prone to higher operating speeds, increasing the risk of severe 

crashes. In addition, urban intersections have more complex relationships with injury severity, 

judging from the amount of variables with significant association. Another clue is that urban 

intersections are the only locations where a crash-related variable was found significant. This 

significance of the urban intersections was presumed when the research method was planned by 

including separate analysis by crash type, which is presented in Chapter 5. It is important to 

know what differences exist between intersection and non-intersection crashes that affect the 

driver injury severity. 
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Table 4-14: Variables with Significant Association between Injury Severity and Characteristics in Roads with 
4 or More Lanes (Intersection and Intersection-related Crashes) 

Parameter 
Group 

Variable  
(general association) 
against injury severity 

4 or more Lanes Straight Sections 
Rural Urban 

Non-
intersection Intersection 

Non-
intersection Intersection 

Driver- 
Related 

Driver Age Group X X   X 
Alcohol Drugs   X   X 
Speeding   X   X 
Race   X   X 
First Traffic Control   X   X 
Vehicle Fault Code X   X   
Gender X   X   
Resident       X 

Roadway- 
Related 

Lighting Condition X   X X 
Location Type   X   X 
Type of Shoulder   X   X 
Undivided Hwy X       

Environment- 
Related 

Time Group X   X X 
Road Surface Condition X     X 
Weather X   X   
Day of Week X       

Crash Location on Roadway       X 
 

 

Important differences between rural and urban crashes can also be inferred. Urban 

intersection environments have more possible factors associated with driver injury severity. In 

particular, the resident variable is exclusive of these intersections, suggesting that the degree of 

complexity or uniqueness in design is a possible reason for this significant association with the 

driver injury severity. On the other hand rural straight sections have a significant association 

between driver age and injury severity, but not the urban sections. Meanwhile lighting conditions 

did not show a significant association with injury severity in rural intersections. Other driver 

behavior, such as speeding and alcohol use seem to dominate the associations. Rural 

intersections did not show significant associations between environment-related variables and 

driver injury severity, but land use and type of shoulder were significant, perhaps differentiating 
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between suburban and rural areas. However, rural segments have significant associations 

between the environment-related variables and driver injury severity. This points to the 

importance of weather conditions (related to visibility) in rural areas, similar to the freeway case. 

 

Table 4-15:  Multilane Road Intersection Crash Driver Involvements by Injury Severity (Intersection 
Crashes) 

Driver Injury 
Severity 

4 or more Lanes Roads 
Rural Urban 

Totals Percent <40 
mph 

>=40 
mph 

<40 
mph 

>=40 
mph 

1  No Injury 1689 9805 7549 12447 31490 59.70% 
2  Possible Injury 667 3855 2350 3752 10624 20.14% 
3  Non-
Incapacitating 
Evident Injury 

473 2903 1473 2742 7591 14.39% 

4  Incapacitating 
Injury 216 1207 457 938 2818 5.34% 

5  Fatal Injury 25 113 34 48 220 0.42% 
Totals 3070 17883 11863 19927 52743 100.00% 
Percent 5.82% 33.91% 22.49% 37.78% 

 

 

The second important comparison between intersections and non-intersection crashes is 

the steady increase of the ratios of driver involvements between rural and urban high-speed 

intersections as the injury level increases. Table 4-15 shows the driver involvements by injury 

severity for intersection crashes. From the information presented, the rural to urban ratio for non-

injury crash involvement is 0.78, but for incapacitating injury is 1.29 and fatal injury crash 

involvement it increases to 2.35. Another important observation for the high-speed crashes is that 

while the total number of crash involvements (37,810) is larger than those occurring at straight 

sections, the number of fatalities is lower for the intersection crashes, the intersection (and 

intersection-related) crashes resulted in almost double the number of incapacitating injuries.  

Special attention was given to these situations in the next stage of the investigation. 



105 

4.1.3 Distribution of Intersection and Intersection-related Severe Crashes 

Preliminary analysis also investigated the frequency of severe crashes on a subset of 

crashes selected by their site location code. From the year 2004 data, after pre-screening for 

complete records, there were 12,487 intersections with at least one crash and 3,075 intersections 

with at least one severe crash.  There are some important contrasts between the distributions, 

which are presented in Appendix A. It is important to point out that all of the distributions were 

found to be similar to the Poisson distribution, with high proportions of intersections with low 

crash counts. This observation needs to be confirmed by future research using the full population 

of intersections. This analysis was divided into the signalized and unsignalized intersections in 

the urban and rural areas. The number of intersections with at least one severe crash was higher 

for the signalized intersections, especially in urban areas. Among the unsignalized intersections, 

those in rural areas had more severe crash frequencies. 
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Figure 4-3: Severe Crash Counts for At (or Near) Urban Signalized Intersections on Multilane Arterials 

 

Previous research in California has shown a tendency of higher total and injury crash 

frequencies for urban signalized intersections (Bauer and Harwood, 1996). Figure 4-3 shows the 

accident frequency distributions of driver crash involvements for urban signalized intersections 

in multilane arterials, which was higher than the other kinds of intersections. This graph suggests 

that close to 20% of the urban signalized intersections reporting severe crashes in 2004 had more 

than one crash. In addition, there are some smaller proportions of intersections with more than 
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five severe crashes in 2004, which was not evident in the graph for the rural signalized 

intersections (see Appendix A).  

This brings the question of exposure vs. number of locations. On one hand, there are 

more urban signalized intersections than rural; it is expected to have larger numbers of urban 

signalized intersections with at least one severe crash. On the other hand, the traffic volumes in 

rural intersections are generally lower and there are similar numbers of intersections with 

multiple severe crashes in the rural and urban areas. Additional research with intersection traffic 

volume data is needed in order to determine the levels of risk for severe crashes at the urban and 

rural signalized intersections on arterials.  

The graph in Figure 4-4, page 108, clearly shows a smaller number of unsignalized 

intersections with one or more severe crashes than the urban or rural signalized intersections. 

These results seem to contradict the benefit of decreased injury severity in signalized 

intersections. Signalized intersection volume and crash warrants dictate that those with certain 

crash frequency thresholds would be candidates for a traffic signal. This selectivity affects the 

risk exposure of the signalized intersections. Regardless of the exposure, the number of 

intersection severe crashes represents a majority of the crashes at multilane arterials, as described 

in the next sections. 
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Figure 4-4: Severe Crash Counts for At (or Near) Rural Unsignalized Intersections on Multilane Arterials 

 

This graphical representation analysis suggests a pattern of increased severe crash 

frequency on signalized intersections in urban areas compared to other kinds of intersections on 

multilane arterials. This analysis doe not pretend to determine which type of intersection is more 

risky, but rather to point out the differences between them in terms of severe crash occurrence. 

The differences in severe crash frequency patterns are important when making model building 
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choices. In this one year analysis, the type of traffic control is an important factor in model 

building. It shall become apparent at the end of the analysis section. 

 

4.2 Exploratory Regression Analysis of One-year Data by Driver Involvement 

An exploratory regression analysis by road entity was performed using driver 

involvements for the 2004 crash data. Logistic regression models with a binary response (severe 

vs. non-severe driver injury) were developed in the exploratory stage. Six models resulted from 

the analysis: all involvements (OVERALL), all intersections (INTERS), signalized intersections 

(SIGNAL), unsignalized intersections (UNSIG), pure segment (PURE SEG), and pure segments 

plus unsignalized intersections (SEGMENT). An additional model was developed for single 

vehicles crash involvements at intersections (SIG 1VEH) but it had poor goodness of fit and was 

not further considered in this exploratory analysis. 

For exploratory logistic regression analysis, additional variable data restrictions reduced 

the original sample size, as shown in Table 4-16, page 110. This table also shows the response 

profile for each subset of data, for which it can be seen that the lowest proportion of severe 

driver injury involvements are for the involvements occurring within pure segments. Pure 

segment involvements are those outside of the signalized or unsignalized intersection area of 250 

ft or not related to its operation; following the site location definition, as explained previously. 

From this analysis, it is apparent that the proportions are not homogeneous, as demonstrated by 

the chi-square test p-value (<.0001). When considering all these models, the contingency 

coefficient (a measure of association) is 0.0870. Since these are not all independent samples, this 

measure only serves as a comparison tool to be used later on. The larger proportions of severe 
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crashes and higher frequencies of severe injuries for the intersection models reflect that in 

multilane arterials the intersections play a preeminent role in the driver injuries. 

 

Table 4-16: Response Profile for Severity Model Data 

  OVERALL INTERS SIGNAL 
SIG 

1VEH SEGMENT 
PURE 
SEG. UNSIG 

Total involved 60221 32651 18956 19339 36447 24332 15102 
Severe injuries 3550 2069 1046 1076 2312 1324 1093 
% Severe injuries 5.89% 6.34% 5.52% 5.56% 6.34% 5.44% 7.24% 
% Difference (vs. 
pure segment) 8% 16% 1% 2% 17% BASE 33% 

Test of homogeneity p<.0001, Contingency Coefficient=0.0870 
 

 

The proportions shown in Table 4-16 suggest a trend toward higher crash injury severity 

for involvements occurring at unsignalized intersections, as well as lower proportions for the 

signalized intersections and pure segments.  It was expected that the signalized intersections 

would affect the crash occurrence in a multilane arterial corridor due to the high concentration of 

these, especially in urban areas. The preliminary analysis has shown that the segment crash 

involvements injury severities are affected by different factors than those related to signalized 

intersections. However, some questions remain:  

• How can the best models for severe crash involvements for drivers in a multilane 

arterial be obtained? Is there a need or enough information for including interaction 

terms not included in previous research? 

• Do signalized intersections and pure segments in fact constitute location and traffic 

control combinations worthy of separate modeling? 
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• Is it better to model some of these combinations together because their factors 

influencing severity (and corresponding countermeasures) are similar? 

The distribution of the driver injury severity of the high-speed multilane arterial crash 

involvements follows the trends already discussed in the preliminary analysis. A total of 60,221 

crashes (from a complete dataset with a total of 106,746 crash records) were found in the 

prepared data for the year 2004 and used in the overall model. The driver injury severity 

distribution for the crash involvements utilized is presented in Figure 4-5. Having analyzed the 

overall crash involvements and following the objective of finding possible differences between 

crashes at different locations and traffic controls, the next step was to analyze intersection 

crashes. 

 

 
Figure 4-5: Driver Injury Severity Distribution for All Involvements on High-speed Multilane Arterials 

 

The comparison of the driver injury distribution for the different road entities and 

combinations used in the six models are paramount to understand the relative importance of the 

results. The graph in Figure 4-6, page 112, shows that the injury distribution in the unsignalized 

intersections is higher for the severe and lower for the non-severe injuries. In Figure 4-7, page 
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112, the pure segments denote lower severe injury proportions. The segment model (combination 

of pure segments and unsignalized intersections) seemed homogenous with the overall sample in 

terms of the injury severity distributions.  
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Figure 4-6: Driver Injury Severity for Involvements At (or Near) Unsignalized Intersections 
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Figure 4-7: Driver Injury Severity for Involvements on Pure Segments 
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4.2.1 Injury Severity Model Building and Interpretation 

A total of six models were calibrated using binary logit regression following the analysis 

tree presented in Section 3.6. An additional model was developed (but not used in the analysis 

due to the small sample size) for single vehicle crash involvements at signalized intersections 

after repeated lack of fit and numerical problems when single and multiple vehicle crash 

involvements at or related to intersections were combined into one severity model. This suggests 

that single and multiple vehicle crashes at the intersection area be considered as an important 

factor when using more advanced statistical methods. In previous research by Nasaar et al. 

(1994) using a nested logit model to predict driver crash injury severity, the differences of single 

and multi-vehicle crashes were apparent. In that investigation, three separated models were 

calibrated according to the crash situation: single-vehicle, two-vehicle and multiple vehicle 

crashes. The six models were developed and their goodness of fit was assessed as discussed in 

forthcoming Section 4.3. Three models were selected for their better statistical qualities: 

unsignalized intersections, signalized intersections (multiple vehicle movements) and pure 

segments. The results of these three models will be discussed next. 

The response value was coded one (1) for severe (incapacitating or fatal) injury or zero 

(0) otherwise. The probability modeled was y=1, making the odds ratios easily interpreted as the 

probability of a severe injury. After model building, the significant coefficients and their values 

were examined for scientific validity. Their particular values were not as important as their signs 

(increasing or decreasing risk of severe driver injury) for this stage of the project. The values 

obtained can be later compared with the multiyear model data. Next, the models were compared 

in terms of their significant variables and their validity. Some positive results in terms of 
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coefficients observed in the three selected models over the three remaining models were found 

during model building. Some of these findings were about variables that were not present in the 

selected models, but showed up in some of the other models with less favorable goodness of fit. 

The following summarizes these findings: 

• Some confounding interactions, such as driver fault or aggressive driving with the 

collision type or traffic control, were not found significant in the selected models. 

However, the always important speed-related, driver age and gender, were significant 

factors in the selected models. 

• Vehicle movements, which may cause confounding effects with the first harmful 

events, were not significant in the models selected, contrary to other competing 

models. 

• Crash lane and district (region) variables were not found to be significant for the 

selected models. These variables did not contain a high interpretative value and had 

some confounding effects on the larger models. 

4.2.1.1 Driver-related Significant Factors 

Once these positive differences were recognized, the focus is on comparing the 

relationships between the significant factors for the three models. First, the driver-related effects 

were compared. Table 4-17, page 115, shows the significant factors present in each model and 

the coefficient interpretation (Increased or Decreased Severe Injury Risk). The increased risk is 

defined as odds ratio above 1.0, the decreased risk with an odds ratio less than 1.0. The blank 

cells indicate that the variable is not present in the model. Variables in light yellow indicate 

marginal individual significance levels (0.05<=p-value<=0.1). Yellow cells indicate that this 
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variable (or level) was found non-significant on the basis of the coefficients (Maximum 

Likelihood Estimates) Wald chi-square analysis (p-value>0.1).  Some of the variable levels 

labeled other are expected to be non-significant, as various different values are combined in 

these categories due to their sparseness. 

 

Table 4-17: Driver-related Significant Factors in Injury Severity Models with Increased Odds Ratio (Positive 
Coefficient) or Decreased Odds Ratio (Negative Coefficient) Compared to Severe Injury Odds Ratio=1 

Model / Parameter PURE SEGMENT SIGNALIZED INT. UNSIGNALIZED 
Driver Age 15-19 (vs. 25-64) Decreased Decreased Decreased 
Driver Age 20-24 (vs. 25-64) Decreased Decreased Decreased 
Driver Age 65-98 (79) (vs. 25-64) Increased Increased Increased 
Driver Age  80-98 (vs. 25-64)  Increased  
Female (vs. male) Increased Increased Increased 
Driver at Fault Decreased Decreased Decreased 
Aggressive Driving (vs. no improper action) Increased Increased  
Other Contributing Cause (vs. no improper 
action) Increased Decreased  

Aggressive Driving   Increased 
Aggressive_*Rear_End Decreased  Decreased 
Aggressive_*Head_On Decreased   
Alcohol/Drugs Involved Increased  Increased 
Speeding    
Speed Ratio 0.91-1.26 (vs. 0-0.9) Increased   
Speed Ratio 1.26-2 (vs. 0 - 0.9) Increased   
Speed Ratio 1.26-2 (vs. 0-1.26)   Increased 
Estimated speed Increased Increased Increased 
Seat Belt (vs. none) Decreased Decreased Decreased 
Safety Helmet (vs. none) Increased Increased  
Other Safety Equipment (vs. none) Increased Increased Increased 
Ejected Increased Increased Increased 

 

 

The results shown in Table 4-17 indicate that all models have factor coefficients that 

agree with the scientifically expected effects on driver injury risk. Younger drivers are less likely 

to be severely injured than middle or older drivers. Older drivers, as expected, are the group most 
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likely to sustain severe injury. Females are found to have increased risk of severe injury than 

males.  Driver group characteristics proved to be important factors, although driver behavior 

factors have the most impact on crash injury severity, as shown in the previous section. 

Drivers at fault are found to have less probability of severe injury than those not at fault. 

One additional variable was derived from the contributing cause field in the crash database. 

Aggressive driving was defined in the preliminary analysis as any of the following driver actions 

(as defined by FDHSMV): Careless Driving, Failed To Yield Right-Of-Way, Improper Lane 

Change, Improper Turn, Followed Too Closely, Disregarded Traffic Signal, Exceeded Safe 

Speed Limit, Disregarded Stop Sign, Improper Passing, Exceeded Stated Speed Limit, 

Disregarded Other Traffic Control. Aggressive driving (vs. no improper driver action) was found 

to be a factor that increased the severe injury risk for the pure segment and signalized 

intersection models. For the unsignalized intersection model a similar increased risk effect was 

observed in the aggressive driving binary (aggressive driving vs. no aggressive driving). This 

dummy variable was required to avoid confounding effects that affected other related variables 

and interactions. Meanwhile, the interactions of aggressive driving with rear-end and head-on 

collision types resulted in decreased risk of a severe driver injury. The interaction with the head-

on crash type suggests that other unsafe driver behavior is at work to make them more likely to 

result in severe injuries. Kim et al. (1995) found that driver behavior such as alcohol or drug use 

and lack of seat belt use greatly increased the odds of more severe injuries for head-on crashes. 

In the case of rear-end crashes, it seems that aggressive driving does have an effect on rear-end 

crash occurrence, which generally result in less severe injury.  

The speed ratio variable indicates the degree to which a driver’s estimated speed is below 

at or above the speed limit. This estimated speed to posted speed ratio was classified into two (0-
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1.26, 1.26-2) or three categories (0-0.9, 0.91-1.26, and 1.26-2). In the pure segment and 

unsignalized intersection models, the significant coefficients suggested an increased severe 

injury risk for those drivers over the speed limit by at least 26%. However, the speed ratio factor 

was not significant for the signalized intersection model. In the pure segments, the changing 

lanes maneuvers and the left turns from minor roads (gap acceptance in unsignalized 

intersections) may be major causes that explain the significance of this factor and that are not 

present with the traffic signal.  Seat belt usage has been repeatedly proven to be a major factor 

reducing injury severity, and it is present in all three models. Finally, being ejected (no use of 

restrain devices) has an opposite and magnified effect: a much larger risk of being severely 

injured than the reduction shown in the seat belt factor. There is a correlation between the two, 

for which it may be said that there is a great overall positive effect of using the seat belt and 

other restrain devices. 

4.2.1.2 Crash-related Significant Factors 

The crash-related effects are shown in Table 4-18, page 118. The major effects of 

increasing driver injury severity (compared to rear-end crashes) are the crash types: head-on, 

angle, fixed-object, and left turn, as expected. The overturned crashes may be correlated to the 

fixed-object-related crashes; this is supported by the non-significance of this variable in the 

signalized intersection driver crash severity model. Pedestrian and bicyclist crashes are also 

expected to contribute to decreased risk of driver severe injury, which is our response variable. 

Vehicle type was found to be significant for the pure segment and unsignalized intersections 

models. The total number of vehicles involved is also significant (increasing risk), but only in the 

pure segment model (but not in the competing segment plus unsignalized intersections model). 
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This is expected, as multiple (three or more) vehicle crashes (such as cross median) are severe 

and more likely to occur on open road segments. The point of impact variable relates the location 

of initial impact on the vehicle and driver injury severity. As expected, frontal crashes and those 

by the driver’s side are more likely to increase the driver’s injury severity.  

 

Table 4-18: Vehicle and Collision-related Significant Factors in Injury Severity Models with Increased Severe 
Injury Odds (Positive Coefficient) or Decreased Severe Injury Odds (Negative Coefficient)  

Model / Parameter PURE SEGMENT SIGNALIZED INT. UNSIGNALIZED 
Head-On collision (vs. Rear-end) Increased Increased Increased 
Angle (vs. Rear-end) Increased Increased Increased 
Left Turn (vs. Rear-end) Increased Increased Increased 
Right Turn (vs. Rear-end)  Decreased  
Sideswipe (vs. Rear-end) Decreased Decreased Decreased 
Pedestrian (vs. Rear-end) Decreased  Decreased 
Bicyclist (vs. Rear-end) Decreased  Decreased 
Fixed Object (vs. Rear-end) Increased Increased Increased 
Overturned (vs. Rear-end) Increased  Increased 
Other Collision (vs. Rear-end) Increased Increased Increased 
Pedestrian and Bicyclist (vs. Rear-end)  Decreased  
Bus/Trucks (vs. Passenger car/ van) Decreased  Decreased 
Bike/motorcycle (vs. Passenger car/ van) Increased  Increased 
Total Number of Vehicles Increased   
Point of Impact (Front Right vs. Front) Decreased Increased Increased 

Point of Impact (Back Right vs. Front) Decreased Decreased Increased 
Point of Impact (Back vs. Front) Increased  Decreased 
Point of Impact (Back Left vs. Front) Decreased   

Point of Impact (Front Left vs. Front) Increased Increased  
Point of Impact (Other vs. Front) Increased Decreased Decreased 
Point of Impact (Back + Back Left vs. Front)  Increased Decreased 
Off Roadway crash Decreased  Increased 
Off-Road*Speed Ratio 0.91-1.26 (vs. 0-0.9) Decreased   
Off-Road*Speed Ratio 1.26-2 (vs. 0 - 0.9) Decreased   

 

 

In addition, there are differences in most coefficients between the unsignalized and pure 

segment models, which may indicate underlying important differences in crash mechanisms that 
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should be further investigated. First, the front right point of impact is only significant for the 

signalized intersection model. Second, the off-roadway crash variable has a well-defined 

increasing severity risk coefficient for the unsignalized intersection model, but conflicting 

coefficients in the pure segment model. Also, the pure segment coefficients are marginally 

significant or non-significant for the interaction between the off-roadway crashes and the speed 

ratio. This may be the result of selectivity of the 250 ft radius as defined for intersection-related 

crashes in Florida used in the crash database, regardless of its traffic control type, physical size 

or traffic volume. However, every other indicator is supporting the validity of these models and 

no evidence of misspecification was found. 

4.2.1.3 Roadway-related Significant Factors 

The road-related effects (see Table 4-19, page 120), although less in quantity than the 

driver-, vehicle- and crash-related factors, are important in this severity model. Recall that one of 

the objectives of this analysis was to find some of the important road characteristics factors not 

traditionally reported in severity analysis. In addition, there might be correlations between some 

of the road characteristics and driver-, crash-, vehicle- or environment-related factors. These 

correlations may prove to be important in this study. The traffic control variable, although 

limited, suggests that stop control is better than no control at all. Crash involvements on high-

speed multilane arterial roadways with urban land use consistently have lower driver injury 

severity risk than their rural counterparts, as expected. 
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Table 4-19: Roadway-related Significant Factors in Injury Severity Models with Increased Severe Injury 
Odds (Positive Coefficient) or Decreased Severe Injury Odds (Negative Coefficient) 

Model / Parameter PURE SEGMENT SIGNALIZED INT. UNSIGNALIZED 
Stop Sign Control (vs. None)   Decreased 
Other Traffic Control (vs. None)   Increased 
Urban (vs. Rural) Decreased Decreased Decreased 
SPEED_LIMIT_ID3 (55-70 mph vs. 40-50 mph)  Increased  
Speed Limit 50 mph (vs. 40-45 mph) Increased  Decreased 
Speed Limit 55 mph (vs. 40-45 mph) Decreased  Increased 
Speed Limit 60-70 mph (vs. 40-45 mph) Increased  Increased 
adt per Lane (in thousands) Decreased  Decreased 
Shoulder Width (<3.5 vs. =>3.5) Increased Increased Increased 
Average Truck Factor (%)  Increased  
Surface Width (ft)  Increased  

 

 

However, the speed limit effect is not consistently represented. The unsignalized and 

signalized intersections models show increased risk with increased speed limit (55 mph or higher 

vs. base 40-45 mph). The different variable categories reflect the uniqueness of each model, as 

optimized using data mining techniques. The pure segment model, however, is not consistent 

with the coefficient values nor are they completely significant. Selectivity (influence area) might 

be an issue, but it is more likely that the interaction between off-roadway crash involvements and 

the speed ratio might suggest that driver behavior is a major factor in the most severe crashes on 

pure segments, rather than the higher speed road design features.  

For the intersection models, increased intersection space size on the major road (larger 

surface and shoulder width) contributes to higher severe driver crash injury involvements. This 

inference considers that fact that minor road crash involvements within 250 ft of all intersections 

are included in this analysis. Therefore, the longer distance to cross the intersection increases the 

risk (vehicle exposure) to both angle and left crashes of the minor road vehicle with a vehicle 

traveling on the high-speed multilane arterial. The relation of intersection size with high crash 
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frequency and severity with at least one major type of intersection (signalized four legs, two-

way) has been already shown in previous research by Abdel-Aty et al. (2006).  

In the case of the pure segments, shoulder width has been shown to be a positive factor in 

speed of the traffic flow. However, neither speed limits nor speed ratio interactions with shoulder 

width were found to be significant in this model. Other underlying relationships that may 

become apparent in the spatial analysis are the rural vs. urban area road characteristics, such as 

intersection (and driveway) density and the presence of right turn auxiliary lanes; which may 

further describe this relationship. 

Finally, traffic factors are also significant in the three models. Increased traffic volume 

per lane, which is a normalized measure of exposure, was found to decrease the chance of severe 

driver injury severity given a crash involvement. Previous research has shown that, under higher 

traffic volume conditions, the frequency of crashes tends to increase but also the average speed 

of traffic decreases, thus resulting in lower injury severity. Also, an increased average truck 

volume percent contributes to more severe driver crash involvements at signalized intersections. 

4.2.1.3 Environment-related Significant Factors 

The environment-related factors are shown in Table 4-20, page 122. It appears that the 

pure segment driver injury severity is most affected by the environmental variables. However, 

some of these variables levels are not significant. Time of day is significant for the pure segment 

model and shows increased risk for drivers during nighttime, which follows previous empirical 

relationships. The most consistent is the lighting condition variable, which is significant for the 

three models and shows the negative effect (increased driver injury severity) of lack of street 

lighting at night. There is also a positive effect for the street lighting, but it is not significant for 
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the pure segments models, perhaps due to a smaller sample of lighted road segments when 

compared to intersections. 

 

Table 4-20: Environment-related Significant Factors in Injury Severity Models with Increased Severe Injury 
Odds (Positive Coefficient) or Decreased Severe Injury Odds (Negative Coefficient) 

Model / Parameter PURE SEGMENT SIGNALIZED INT. UNSIGNALIZED 
Dark- with street lighting (vs. daylight) Decreased Decreased Decreased 

Dark- no street lighting (vs. daylight) Increased Increased Increased 

Head_On*Dark- with street lighting (vs. daylight) Increased   

Head_On*Dark- no street lighting (vs. daylight) Increased   

Sideswipe*Dark- with street lighting (vs. daylight) Increased   

Sideswipe*Dark- no street lighting (vs. daylight) Decreased   

Time Group (12AM-6AM vs. 6AM-Noon) Increased   

Time Group (6PM-Midnight vs. 6AM-Noon) Increased   

Time Group (12PM-6PM vs. 6AM-Noon) Decreased   

 

4.2.2 Variable Relative Significance Analysis 

The variable relative significance analysis results (see Table 4-21, page 123) show that 

the Pure Segment crash involvement driver injury severity are most influenced by the driver-

related variables (gender, driver fault, contributing cause, safety equipment, ejected) and the first 

harmful event (collision type), followed by the average traffic volume per lane and point of 

impact variables. 
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Table 4-21: Relative Variable Significance in Exploratory Injury Severity Models 

Contributing Factor Major (p<.001) 
Moderate 

(.001<=p<.01) 
Minor 

(.01<=p<.05) 
Driver Age Group All     
Gender All     
Driver Fault  All     
Aggressive_Driving All     
Estimated_speed All     
Safety_Equipment All     
Ejected_ID All     
First_Harmful_Event All     
Point_of_Impact All     
Urban_ID Unsign, Seg Sign   
SPEED_LIMIT Unsign, Sign   Seg 
Shouder Width Sign Unsign Seg 
Lighting_Condition   Unsign Seg, Sign 
Rear-end*Aggressive Seg Unsign   
Alcohol_Drugs_ID Unsign Seg   
Speed_Ratio Seg Unsign   
VEH_TYPE_GROUP Seg, Unsign     
Off_Roadway_ID   Unsign Seg 
ADT_Per_Lane Seg Unsign   
Aggressive*Head_On     Seg 
Number_of_Vehicles   Seg   
Ped*Num_Vehicles   Seg   
Off_Roadw*Speed_Ratio     Seg 
Head_On*Lighting_Cond.     Seg 
Sideswipe*Lighting_Cond.     Seg 
Time_Group Seg     
First_Traffic_Contro Unsign     
AVG Truck Factor     Sign 
SURFACE WIDTH     Sign 
Road_Surface_Condition     Sign 
All= all models, Unsign= Unsignalized, Sign=Signalized, Seg=Pure Segment. 

 

 

  In contrast, the unsignalized intersection model is more influenced by safety equipment, 

followed by collision type and some of the driver-related variables (ejected, age group, gender), 

but in this case age being more important than gender, which agrees with previous research that 



124 

point to the differences in ability of drivers by age groups required to accept gaps (minor road 

drivers) and major road drivers reaction to vehicles crossing from the minor road at unsignalized 

intersections. The speed factor relative significance points to the issue of the fixed-object crash 

significance mentioned earlier as well as to the gap acceptance for the vehicle in the minor road. 

Other elements like point of impact, vehicle type; alcohol/drug use, aggressive driving, and 

speed limit have a moderate effect, which suggests that severe crashes at unsignalized 

intersections are more influenced by road features when compared to the pure segment 

involvements.  

Finally, the signalized intersection crash involvements are more influenced by the 

collision type, safety equipment, and ejected variables, as the other models. However, the 

driver’s estimated speed is the next most influential factor, followed by the gender and age, 

which are more influential as a pair compared to the other models. The gender and age influence 

points to a more balanced correlation, which may suggest that there are more complex issues at 

work in the signalized compared to the unsignalized intersections.  

In terms of environment-related variables, the Pure Segment model is more influenced by 

the Time Group variable, which may be correlated to driver behavior. Nevertheless, it pinpoints 

to some of the most effective methods to reduce severe crashes at the arterial segments. Lighting 

condition has a minor relative significance; only in the unsignalized intersection models it has 

moderate relative significance. The street lighting factor is an important design feature that is 

less frequently found on unsignalized (smaller) intersections than at signalized intersections. 

In conclusion the most important variables for the crash involvements driver injury 

severity are: collision type (harmful event), safety equipment and ejection, gender, age, estimated 

speed (signalized intersections), driver fault, contributing cause (and aggressive driving), and 
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point of impact. Other major and moderately influential variables include speed ratio 

(unsignalized), alcohol/drugs and speed limit (signalized and unsignalized), and traffic volume 

(unsignalized). Lighting condition is more influential in the unsignalized intersection model, 

while shoulder width is more so in the signalized model. 

  

4.3 Exploratory Models Reliability Comparison 

 The six injury severity models were developed and their goodness of fit was compared in 

order to select the best models that explain all the crashes occurring on high-speed multilane 

arterial corridors. Models with larger groups of crashes were compared against smaller, more 

disaggregated models. The results summary of the model assessment (see Table 4-22, page 126) 

shows that a model based on all of the crash involvements at intersections, although has an 

acceptable classification accuracy, fails the Hosmer-Lemeshow decile of risk goodness of fit test 

(p-value<0.05). The convention of this test is that the larger the p-value, the better is the model 

fit. Another measure for comparison is the difference of the deviance (equal to the SSE when 

computed for a linear regression), which measures the improvement in the classification 

accuracy of the response variable. The AIC value is use due to its asymptotic efficiency. 
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Table 4-22: Competing Models Assessment Summary 

GOF Parameter OVERALL INTERS SIGNAL SEGMENT 
PURE 
SEG UNSIG 

Number of Variables 29 26 16 23 27 20 
Degrees of freedom 60 53 34 49 54 40 
Marginally significant 
levels 3 3 2 5 1 2 
Non-significant levels 8 6 4 7 14 7 
AIC 22802.63 13382.04 7301.98 14145.56 8201.96 6707.86 
Hosmer-Lemeshow p-
value 0.4419 0.0475 0.2594 0.9837 0.5474 0.5354 
c value(area under ROC 
curve) 0.782 0.765 0.738 0.799 0.82 0.773 
Percent Concordant 77.6 76 73.1 79.5 81.4 76.8 
Deviance 22680.63 13274.04 7231.98 14045.56 8091.96 6625.86 

 

 

Graphical methods were used in addition to statistical testing to better assess the 

goodness of fit of the binary logit models. To measure the model discrimination capability, the 

ROC curves for the models were reviewed. For the signalized intersection model, the ROC curve 

is generally smooth, showing model stability (see Figure 4-8, page 127). The unsignalized model 

produced a similar curve (see Figure 4-9, page 127). Finally, the pure segment model ROC 

curve, is the best of the three, demonstrating better discrimination for lower specificity values 

(see Figure 4-10, page 127). The pure segment model was found to have excellent discrimination 

with a c value of 0.82. All the competing models c values (area under the ROC curve) were 

above 0.7, which amounts to acceptable discrimination, following the guidelines set forth in 

Hosmer and Lemeshow (2000). Therefore the AIC criterion was the determinant factor for model 

goodness of fit comparison in this analysis. 
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Figure 4-8:  ROC Curve for the Signalized Intersection Crash Driver Injury Severity Model 
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Figure 4-9: ROC Curve for the Unsignalized Intersection Crash Driver Injury Severity Model 
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Figure 4-10: ROC Curve for the Pure Segment Crash Driver Injury Severity Model 

 

The model building and assessment showed that the best results are obtained by 

classifying the intersection crash involvements by traffic control at the intersection of interest. 

Previous research has shown the validity of developing specific models for intersection crashes 

by traffic control and other geometric features. Some bias with respect to the total population 

may be present due to a larger proportion of signalized intersections on the state roads. However, 

the data availability benefit outweighs the possible bias, especially when considering multilane 

arterials, which tend to have similar characteristics over the entire road network. In summary, the 

resulting models’ goodness of fit (refer to Table 4-22, page 126) shows that: 

• The three best models by comparison of their AIC value are the unsignalized 

intersection, signalized intersection (multiple vehicle involvements), and pure 

segments. 
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• These three models have acceptable or excellent discrimination. In addition, the three 

models seems to fit quite well, as indicated by the p-value for the Hosmer-Lemeshow 

(>0.05), a test of model calibration. All models had previously passed the score and 

likelihood ratio tests (not shown here). 

This analysis leads to the conclusion that, statistically, there is good reason to follow a 

modeling scheme of unsignalized intersection, signalized intersection (multiple vehicle 

involvements), and pure segments to appropriately explain the driver’s injury severity for crash 

involvements on high-speed multilane arterials. However, these models failed to account for all 

the crashes because the single vehicle crashes at signalized intersections could not be included. 

In addition, other calibration and discrimination measures of fit were favorable for some of the 

aggregated models (i.e. all crashes and segments). 

 

4.4 Conclusions from the Exploratory Analysis 

In conclusion, different crash conditions and data availability influenced the results of 

this analysis. Data mining techniques and correlation analysis allowed for feasible first order 

interaction model building without sacrificing model stability. The most important variables for 

the crash involvements driver injury severity are: collision type (harmful event), safety 

equipment and ejection, gender, age, and estimated speed (in signalized intersections). Other 

moderately influential variables include driver fault, contributing cause (and aggressive driving), 

point of impact, speed ratio (for pure segments), alcohol/drugs (in unsignalized intersections), 

speed limit (in signalized and unsignalized intersections), and traffic volume (for pure segments). 

Regarding environmental factors, lighting condition is more influential in the unsignalized 
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intersection model, while shoulder width is more so in the signalized model. The street lighting 

represents yet another design feature shown to reduce the driver injury severity in a crash 

involvement. These preliminary results will be extended and validated by multiyear crash 

analysis presented in Chapter 5. 

There are three main models that were the best to identify the factors that contribute to 

crash involvement driver injury severity. However, a final conclusion could not be achieved 

because of three reasons. First, the data preparation process needs to be improved to avoid 

repeated values of crash, roadway and environment-related variables. Second, the model building 

and assessment process will be improved by better selecting categorical variable cut-off values 

and by expanding the preliminary analysis of each variable to improve pre-screening. Additional 

criteria will be examined for the model assessment in the final analysis. Third, the signalized 

intersection model must include single and multiple vehicle crashes, otherwise the models are 

not comparable since not all crashes are included and the modeling comparison may be 

misleading. 
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CHAPTER 5. FINAL ANALYSIS 

5.1 Introduction 

The main difference between the data in the exploratory analysis and the final analysis 

presented in this chapter is the format of the driver and vehicle data. While in the exploratory 

analysis all involvements were considered, in the final data preparation each crash had one row 

(record) which included up to four involvements. The main goal of the final analysis was to 

reach conclusions about the injury severity risk using logistic regression statistical models not 

affected by repeated measures. To achieve this, one involvement per crash can be analyzed in a 

model. We notice from Table 5-1 that most involvements (up to 82.6%) had two or less drivers 

involved. This means that involvements with driver sections 1 and 2 provide an appropriate 

sample to analyze the multiple vehicle crashes. The crash and involvement figures shown below 

were used in the preliminary analysis; the final analysis will be discussed in Section 5.4. 

 

Table 5-1: Drivers Involved in Crashes in High-speed Multilane Roads 

All involvements (state roads) 

Total Number of Drivers Frequency Percent 

1 18701 8.66% 
2 159912 74.07% 
3 29337 13.59% 
4 6362 2.95% 
5 1252 0.58% 
6 237 0.11% 
7 64 0.03% 
8 21 0.01% 
9 7 0.00% 
10 2 0.00% 
11 2 0.00% 
12 1 0.00% 

Total 215898 100.00% 
 

Complete data subset (state roads) 

Total Number of Drivers Frequency Percent 

1 9238 7.67% 
2 88983 73.89% 
3 17332 14.39% 
4 3893 3.23% 
5 774 0.64% 
6 134 0.11% 
7 43 0.04% 
8 16 0.01% 
9 4 0.00% 
10 2 0.00% 
11 1 0.00% 
12 1 0.00% 

Total 120421 100.00% 
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Those reports without missing data in the fields (variables) considered for the final 

analysis shown in Appendix B are considered complete reports. The differences in proportions of 

crashes reported in vehicle sections 1 and 2 were very small (refer to Table 5-1, page 131). There 

is no evidence of a bias in the proportion of multiple vehicle crashes when the dataset is reduced 

to those crashes with complete reports. Previous studies selected single vehicle crashes or 

multiple vehicle crashes with only 2 involvements including Duncan et al. (1998), Kockelman 

and Kweon (2002), Toy and Hammitt (2003) as well as Ulfarsson and Mannering (2004). This is 

considered a good practice for a systematic analysis because a small group of multiple vehicle 

crashes (with more than 2 involvements) which represent less than 5% of the total crashes may 

not be well represented in the disaggregate injury severity analysis.  

Another option considered in this investigation was to consider two models that include 

single and multiple vehicle crashes. To test if the order of the driver-vehicle sections in the two-

vehicle crashes were statistically independent, the values in Driver 1 and Driver 2 sections were 

analyzed for each variable. See Section 3.1.1 for more information on the vehicle-driver sections 

in the crash report. The preliminary analysis presented in Section 5.3 showed significant 

dependence between the Driver 1 and Driver 2 sections for most of these variables. Therefore, a 

stratified random sample of two-vehicle crashes was selected for the multiple vehicle crashes. 

The single vehicle crashes on the complete dataset were added to complete the dataset for the 

final analysis. The final analysis research steps outlined in Section 1.3 are presented in 

subsequent sections of this chapter. Recall that only crash involvements on high-speed (40 mph 

or higher speed limit) multilane (4 or more lanes) roads were considered in this investigation. 
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5.2 Preliminary Analysis  

5.2.1 Categorical Variable Analysis 

The exploratory analysis demonstrated that one of the most pressing issues confronted 

was the selection of cut-off points and base levels for the categorical variables. Several 

techniques including categorical data analysis, optimized bins, and exploratory regression 

analysis were used. The variable categories were chosen to allow effective comparison when 

using 26 different data subsets. This meant that the variable cut-off points remained uniform 

during the analysis, while maintaining model stability in each case. By analyzing the different 

crash types in the preliminary analysis, some of the variables exhibited low cell values and 

numerical problems. This was tested thoroughly in the final analysis to allow a comparison of the 

effects found significant in each of the models. We will consider the driver, vehicle, road, crash 

and environment-related variables separately to facilitate the discussion of the results. Recall that 

a severe involvement was defined as one with an incapacitating or fatal injury outcome. 

 

Table 5-2: Drivers Involved (in Sections 1 and 2) in Crashes at High-speed Multilane Roads  

Driver-vehicle section 1 Driver-vehicle section 2 
 Year Severe_driver1 

Total Frequency Non-
severe Severe 

(Percent) 

2002 
42827 2994 45821 
(31.58) (2.21) (33.79) 

2003 
41247 2772 44019 
(30.41) (2.04) (32.46) 

2004 42966 2818 45784 
(31.68) (2.08) (33.76) 

Total 
127040 8584 135624 
(93.67) (6.33) (100.00) 

   Test of independence p-value=0.0589,  
   Contingency coefficient= 0.0065 

Year Severe_driver2 
Total Frequency Non-

severe Severe 
(Percent) 

2002 
45089 2723 47812 
(32.14) (1.94) (34.08) 

2003 
42628 2665 45293 
(30.38) (1.90) (32.28) 

2004 44648 2548 47196 
(31.82) (1.82) (33.64) 

Total 
132365 7936 140301 
(94.34) (5.66) (100.00) 

Test of independence p-value=0.0055,  
Contingency coefficient= 0.0086 
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The possible temporal variation for three years of crash data was addressed by testing the 

statistical independence between the response variable (severe driver injury) and the year of the 

crash involvement. The analysis in Table 5-2, page 133, shows that there is a drop in the counts 

of crashes for the year 2003, which follows the general trend seen in the total crash counts listed 

in the Traffic Crash Statistics publication (FDHSMV, 2007). Furthermore, these results generally 

coincide with the proportion of severe crashes in the high-speed multilane arterials found in the 

exploratory analysis. The chi-square test of independence resulted in a p-value slightly greater 

than 0.05, so that the null hypothesis of statistical independence is not rejected for the driver 1 

section. However, for the driver 2 section, the p-value is less than 0.05, rejecting the statistical 

independence hypothesis. This is a cause of concern if we are to select a dataset for the models 

based on the driver section in the crash report. 

 

Table 5-3: Crash Severity Proportions for High-speed Multilane Roads (All Jurisdictions vs. State Roads) 

Crash Injury Severity 

All high-speed 
multilane roads 

State high-speed 
multilane roads 

Frequency Percent Frequency Percent 
Unknown 1198 0.55 788 0.5 

No injury (PDO) 65009 30.11 47897 30.57 
Possible Injury 68410 31.69 49963 31.89 

Non-incapacitating Evident injury 53665 24.86 38551 24.6 
Incapacitating Injury 24632 11.41 17183 10.97 

Fatal Injury 2984 1.38 2306 1.47 
Totals 215898 100 156688 100 

 

 

A second issue addressed during the preliminary analysis was whether crashes reported in 

long forms that occurred in non-state roads would be significantly different than those occurring 

on state roads. The dataset of 215,898 crashes included crashes in state and non-state roads 
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without eliminating any crash report available. Due to the data requirements explained in Section 

3.2, only crashes on state roads will be considered in the regression analysis. The crash severity 

(highest injury severity in each crash) was analyzed for both the total dataset and the subset of 

state road crashes. The total dataset had 215,898 crashes (refer to Table 5-3); crashes in state 

roads totaled 156,688 records. There is a significant amount of crashes occurring on non-state 

roads which are relevant to the analysis of the safety performance of the high-speed multilane 

arterials. The proportions were found to be almost equal for the two datasets. This preliminary 

analysis suggests that there are no significant differences between the severe crashes in state vs. 

non-state roads for the high-speed multilane arterials. Further research should be developed 

when additional non-state road data become widely available. 

The categorical analysis described in Section 3.3 was developed for a group of 47 

variables that were extracted from the dataset prepared for the final analysis. Appendix B shows 

the results of the categorical data analysis for the entire dataset of crashes on all high-speed 

multilane arterials and a second analysis using only crashes occurring on a state road (also high-

speed multilane arterial). This analysis did not show discrepancies in the statistical independence 

tests. Also, there were no major discrepancies in the measures of association (Contingency 

coefficient and Cramer’s V) between each independent variable and the driver injury severity 

response variable. The comparative analysis between the crashes occurring on state and non-state 

roads showed no evidence of a significant difference between the two groups in regards to the 

injury severity. Additional validation might prove the transferability of the results presented in 

this chapter to non-state high-speed multilane arterials. On the other hand, further analysis of the 

measures of association comparing their respective results for the driver 1 and 2 sections did 

show some discrepancies, which will be discussed next. 
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Table 5-4: Relative Strength of Association with Driver Injury Severity (from Drivers 1 and 2 Sections) 

Degree of 
association Driver-related Vehicle-Crash-related 

Environment- and 
Roadway-related 

Strong 

Vehicle_Fault_Code1 (or 2) On_Off_Roadway TIME_GROUP 
Speeding1 (or 2) Ejected1 (or 2) Location_Type 
Alcohol_Drug_Use1 (or 2) Location_on_Roadway1(or 2) Trafficway_Character 
First_Safety_Equipment1   Site_Location 

Moderate 

Driver_Ageg_Group1 (or 2) CRASH_LANE Rural_Urban 
First_Contributing_Cause1 
(or 2) Total_Number_of_Drivers Lighting_Condition 

  Type_of_Vehicle1 (or 2) 
CRRATECD (Median 
plus land use) 

  Point_of_Impact1 (or 2)   

  
First_Harmful_Event1  
(or 2)   

Weak 

Red_light_running1 (or 2) 
Vehicle_Movement1  
(or 2) 

Divided_Undivided 
Highway 

Sex1 (or 2) Vehicle_Use1 (or 2) Type_of_Shoulder 
Physical_Defects1 (or 2)   NUM_LEGS 
    Median_type 
    TYPEPARK 
    First_Traffic_Control 
    Number_of_Lanes 

Very weak 
Race1 (or 2) 

Vehicle_Special 
Functions1 (or 2) Weather 

Residence_Code1 (or 2) 
First_Vehicle_Defect1  
(or 2) 

Road_Surface 
Condition 

    Road_Surface_Type 
*Variables in italics represent weak of very weak associations with the driver 2 injury severity 

 

 

The relative strength of association shown in Table 5-4 compared the measures of 

association by degree of freedom in order to ascertain their relative strength. For example, a 

contingency coefficient of 0.08 or above (for degrees of freedom greater than 10, contingency 

coefficient values 0.15 and above) was considered strong relative to the results of rest of the 

variables. The strength of association shown in the exploratory analysis (see Table 4-5) did not 

agree with the analysis just presented. Some notable exceptions are lighting condition, driver at-

fault and driver age group (which now have a strong association); vehicle movement, race, 

number of lanes and type of shoulder (which now have a weak association). Differences between 
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the two analyses are expected since the final dataset have excluded all crashes on full access 

control roads.  

A close examination of the variables that were found to have the most relative 

significance in the exploratory analysis helped to understand the nature of their relationship with 

the driver injury severity. This categorical variable analysis showed which direction (sign) to 

expect if these variables were found significant in the severity models. Also, it was part of the 

basis for testing interactions in the final analysis.   

5.2.1.1 Driver-related Variables 

The most important variables considered here are the driver injury severity, the driver’s 

age and gender. The first is the target of our analysis, the latter are the most significant effects 

found in the literature. The injury severity levels by driver section (see Table 5-5) include all the 

crashes on state high-speed multilane roads. Sampling drivers from sections 1 and 2 resulted in a 

proportion of driver injury severity similar to that of the vehicle-driver sections 1 to 4. Records 

with missing and invalid data (from any of the variables) were removed. In the case of injury 

severity alone, removed records (injury severity levels 0 and 6) accounted for 12.15% of the total 

driver 1 records and 3.66% of the driver 2 records.  

 

Table 5-5: Total Frequency of Involvements by Injury Severity for Different Driver Sections 

Injury Severity Level Driver sections 1-4 Driver 1 Driver 2 
Frequency Percent Frequency Percent Frequency Percent 

0 37130 7.98% 26333 12.11% 7359 3.65% 
1 254424 54.69% 118957 54.71% 104714 51.91% 
2 90812 19.52% 33488 15.40% 49559 24.57% 
3 57579 12.38% 26135 12.02% 28515 14.14% 
4 23241 5.00% 11129 5.12% 11019 5.46% 
5 1903 0.41% 1326 0.61% 543 0.27% 
6 94 0.02% 81 0.04% 12 0.01% 

Total 465183 100.00
 

217449 100.00
 

201721 100.00
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The complete data showed in the right portion of Table 5-1 corresponded to 120,421 

crashes during the years 2002-2004. Two separate datasets were created for the preliminary 

analysis. The first consisted of 120,421 involvements of the first driver in a multiple or single 

vehicle crash. The second dataset of driver involvements (not from single vehicle crashes) had 

more complete records (n2=127,819) because it was sampled independently from the driver 

section 1 dataset for the preliminary analysis. Crashes with complete information in the driver 2 

section were included in the second dataset, even when the driver 1 section was incomplete. 

Some trends of single and multiple crashes can be identified in the tables discussed below.  

 

Table 5-6: Driver Age Group by Injury Severity for Vehicle-driver Sections 1 and 2 

Driver-vehicle section 1 Driver-vehicle section 2 
Driver Age 

Group1 Severe driver1 
Total Pct Frequency Non-

severe Severe (Row Pct) 

15-19 years 14239 837 15076 12.52% (94.45) (5.55) 

20-24 years 16428 995 17423 14.47% (94.29) (5.71) 

25-64 years 69189 4615 73804 61.29% (93.75) (6.25) 

65-79 years 9236 858 10094 8.38% (91.50) (8.50) 

80-98 years 3608 416 4024 3.34% (89.66) (10.34) 
Total 112700 7721 120421 100.00% Percent 93.59% 6.41% 

Test of independence p-value=<.0001, 
Contingency Coefficient=0.042 

 

Driver Age 
Group2 Severe driver2 

Total Pct Frequency Non-
severe Severe (Row Pct) 

15-19 years 10476 539 11015 8.62% (95.11) (4.89) 

20-24 years 15737 857 16594 12.98% (94.84) (5.16) 

25-64 years 84216 5147 89363 69.91% (94.24) (5.76) 

65-79 years 8508 564 9072 7.10% (93.78) (6.22) 

80-98 years 1652 123 1775 1.39% (93.07) (6.93) 
Total 120589 7230 12781

9 100.00% Percent 94.34% 5.66% 
Test of independence p-value=<.0001, 
Contingency Coefficient=0.0158 

 

 

 

The age of the driver was a contributing factor in the exploratory models presented in 

Section 4.2. Middle age drivers (25-64 years old) compose the majority of the involved drivers in 

both sections, driver section 2 (69.91%) somewhat higher than section 1 (61.29%). The major 
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difference in the proportions is for the very young drivers (15-19 years old), which represent 

12.52% of the involved drivers in section 1 vs. only 8.62% in section 2. This suggests an 

increased involvement of youngsters in single vehicle crashes. Clearly, their proportions of 

severe injuries are lower than for any of the age groups, as their physical condition is generally 

most favorable in case of a crash. For high-speed multilane arterials, there is a significant 

difference in the proportion of severe crashes for older drivers (refer to Table 5-6). When 

comparing the driver 1 and driver 2 sections, the effect of single vehicle (off-road) crashes is 

perceived as increasing the chance of severe crashes. This was investigated in the final analysis 

models by testing the interaction variable driver age and off-roadway crash. 

Land use (as a surrogate of travel choice) may also influence the severe crash outcomes 

for different driver age groups, an interaction (age group and rural/urban) was also tested in the 

final analysis. Another set of interacting variables (driver age and driver at-fault) was tested to 

determine if the decreased severity odds ratio found in the exploratory analysis holds for all age 

groups, but it caused numerical problems (quasi-separation) as explained in Section 5.4.2. This 

result tends to confirm the theory of the driver at-fault bias in the driver injury severity modeling. 

 

Table 5-7: Driver Gender by Injury Severity for Vehicle-driver Sections 1 and 2 

Driver-vehicle section 1 Driver-vehicle section 2 
Gender1 Severe driver1 

Total Pct Frequency Non-
severe Severe (Row Pct) 

Male 68800 4545 
73345 60.91% (93.80) (6.20) 

Female 43900 3176 
47076 39.09% (93.25) (6.75) 

Total 112700 7721 120421 100.00% Percent 93.59% 6.41% 
Test of independence p-value=0.0001, 
Contingency Coefficient=0.011 

 

Gender2 Severe driver2 
Total Pct Frequency Non-

severe Severe (Row Pct) 

Male 68662 3886 
72548 56.76% (94.64) (5.36) 

Female 51927 3344 
55271 43.24% (93.95) (6.05) 

Total 120589 7230 127819 100.00% Percent 94.34% 5.66% 
Test of independence p-value=<.0001, 
Contingency Coefficient=0.0149 
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Gender was a variable of major importance in all of the exploratory models, as shown in 

Section 4.2.2. Different driver behavior and physiological characteristics play a role in the 

different outcomes of a crash event. It can be observed that females have a larger proportion of 

severe injuries, while males have a larger number of severe injury involvements (refer to Table 

5-7, page 139). There seems to be an overrepresentation of male total and female severe 

involvements, when compared to the general population. However, there is no direct gender 

exposure measure of the driving population on arterial corridors. 

 

Table 5-8: Safety Equipment Used by Injury Severity for Vehicle-driver Sections 1 and 2 

Driver-vehicle section 1 Driver-vehicle section 2 
Safety 

Equipment1 Severe driver1 
Total Pct Frequency Non-

severe Severe (Row Pct) 

None 10532 2310 
12842 10.66% (82.01) (17.99) 

Seat belt / 
Child Seat 

100331 4728 
105059 87.24% (95.50) (4.50) 

Other 1837 683 
2520 2.09% (72.90) (27.10) 

Total 112700 7721 120421 100.00% Percent 93.59% 6.41% 
Test of independence p-value=<.0001, 
Contingency Coefficient=0.2054 

 

Safety 
Equipment2 Severe driver2 

Total Pct Frequency Non-
severe Severe (Row Pct) 

None 6684 1161 
7845 6.14% (85.20) (14.80) 

Seat belt / 
Child Seat 

112402 5509 
117911 92.25% (95.33) (4.67) 

Other 1503 560 
2063 1.61% (72.86) (27.14) 

Total 120589 7230 127819 100.00% Percent 94.34% 5.66% 
Test of independence p-value=<.0001, 
Contingency Coefficient=0.1569 

 

 

 

The use of seat belts has been an important factor in reduced injury severity odds ratio for 

the exploratory analysis. As shown in Table 5-8, the rate of severe injuries is much higher when 

no seat belt use is reported. However, previous studies such as the one by Richardson et al. 

(1996) have found seat belt use over reporting for the non-severe crashes to avoid traffic fines. 

For severe crashes, it is usually possible for the police officer (or EMT) to determine if the 

injured occupant was using a seat belt. 
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The rate of seat belt use for non-severe injuries is quite high (between 87 and 92% for 

driver 1 and 2, respectively), while for the severe injuries is between 61 and 76%.  The 

difference in the rates for the severe and non-severe crashes is between 17 and 28%. The official 

rate of usage across Florida in 2004 was 76.3% (FDOT, 2008). Comparing the rate of seat belt 

use of the non-severe crashes with the average use in Florida reveals that the over reporting 

could be as high as 13% for driver 1 and 17% for driver 2. Previous studies have suggested 

various rates of over-reporting of seat belt usage in non-severe crashes. A study by Streff and 

Wagenaar (1989) compared self-reporting of seat belt use to observational surveys of the same 

population. The authors’ best estimate was to discount self-reported rates by 12 percent. In a 

study of police-reported crash data in Hawaii, Li et al. (1999) found a 10% reduction in the 

reported seat-belt use rate when adjusting for over-reporting. In addition, Hawaii hospital data 

showed that physicians reported 63.59% seat belt usage, while police reports usage rate was 

90.26%. These figures are somewhat similar to the percentages presented in Table 5-8, page 140, 

which suggests that there is an over-reporting of the seat belt usage in the Florida crash data. 

 

Table 5-9: At-fault Driver by Injury Severity for Vehicle-driver Sections 1 and 2 

Driver-vehicle section 1 Driver-vehicle section 2 
At Fault 
driver1 Severe driver1 

Total Pct Frequency Non-
severe Severe (Row Pct) 

Not cited 35730 3731 
39461 32.77% (90.55) (9.45) 

Cited 76970 3990 
80960 67.23% (95.07) (4.93) 

Total 112700 7721 120421 100.00% Percent 93.59% 6.41% 
Test of independence p-value=<.0001, 
Contingency Coefficient=-0.0867 

 

At Fault 
driver2 Severe driver2 

Total Pct Frequency Non-
severe Severe (Row Pct) 

Not cited 112578 6899 
119477 93.47% (94.23) (5.77) 

Cited 8011 331 
8342 6.53% (96.03) (3.97) 

Total 120589 7230 127819 100.00% Percent 94.34% 5.66% 
Test of independence p-value=<.0001, 
Contingency Coefficient=-0.0193 
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The driver involved in a crash cited for a moving violation is considered at-fault. This 

measure of legal responsibility also reflects unsafe driving behavior. The lower rates of severe 

driver injury for those found at-fault just shown in Table 5-9, page 141, agree with the results of 

the exploratory analysis. It is important to note that the drivers in section 1 have a stronger 

tendency to be at fault; however, there is no evidence of a systematic bias for multiple vehicle 

crashes, as shown in Section 5.3. On the other hand, a large proportion of driver 1 innocent 

drivers sustained severe injuries (9.45%), which is one of the highest proportions seen so far in 

this investigation. At issue is whether single vehicle crashes with severe crash outcomes are less 

likely to involve unsafe driver behavior.  

A study of Central Florida signalized intersections by Abdel-Aty (2003) found a 

significant negative effect of drivers not at fault, possibly due to the driver at fault being the 

striking vehicle, which for angle and turning crashes is expected to experience a lower level of 

injury than that of the driver of the stricken vehicle. This factor was found significant in all the 

exploratory models, which may have broader implications for the high-speed multilane arterials. 

The speeding and contributing cause variables discussed next exhibit a similar situation 

with significant differences between the relationships for drivers 1 and 2. It is possible that police 

officers would tend to record cited drivers first and this compounded with the single vehicle 

crashes contributes to the higher proportion of severe injuries for the driver 1 section. 

Throughout this analysis, there is evidence of important differences between the driver 1 and 2 

sections and serve as investigative support for the sampling of drivers from sections 1 and 2 for 

the final analysis. Only one driver involvement per crash was analyzed, and stratified sampling 

proved to be a sound method, as discussed in Section 5.3. This categorical data analysis served to 

indicate the association of these variables with the driver injury severity and to point out some 
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trends that were ultimately confirmed in the final analysis. The tests for independence had the 

same conclusion for both sections in most cases, as shown in Appendix B. Only in one case were 

the variable was clearly significant in this test for both sections were excluded from further 

analysis. Part of the validation of the sampling technique involves comparing the final models 

with the trends presented in this section to confirm whether the sample captured the effects from 

both driver sections. These sections represent a vast majority of the total driver involvements. 

 

Table 5-10: Driver Speeding by Injury Severity for Vehicle-driver Sections 1 and 2 

Driver-vehicle section 1 Driver-vehicle section 2 
Speeding1 Severe driver1 

Total Pct Frequency Non-
severe Severe (Row Pct) 

No 
speeding 

23823 2933 
26756 22.22% (89.04) (10.96) 

Speeding 76846 4043 
80889 67.17% (95.00) (5.00) 

Unknown 12031 745 
12776 10.61% (94.17) (5.83) 

Total 112700 7721 120421 100.00% Percent 93.59% 6.41% 
Test of independence p-value=<.0001, 
Contingency Coefficient=0.0993 

 

Speeding2 Severe driver2 
Total Pct Frequency Non-

severe Severe (Row Pct) 
No 

speeding 
23425 2206 

25631 20.05% (91.39) (8.61) 

Speeding 53356 3074 
56430 44.15% (94.55) (5.45) 

Unknown 43808 1950 
45758 35.80% (95.74) (4.26) 

Total 120589 7230 127819 100.00% Percent 94.34% 5.66% 
Test of independence p-value=<.0001, 
Contingency Coefficient=0.0678 

 

 

 

Speeding is suspected to be a major factor in severe crashes. Table 5-10 indicates that the 

rate of severe crashes is less for those drivers found speeding than for those not speeding. This 

result is similar to the at-fault driver results shown previously. The driver with the speeding 

citation would be at-fault and since it is usually the striking vehicle, it would cause severe 

damage to the stricken vehicle (usually not speeding). An interaction variable of speeding and 

point of impact was tested in the models to prove whether this theory was true. In addition, the 

proportion of non-speeding drivers in section 1 with severe injuries is of great concern.  
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Since the speeding indicator is computed using the estimated speed reported by the police 

officer only for certain types of crashes, there are more missing data than for any other variable. 

It is more likely that the police officer reports an estimated speed for a severe crash requiring a 

thorough investigation. Thus, it was deemed pertinent to include this variable (with one level 

labeled unknown) for its perceived significance in severe crash outcomes. The bias implications 

of this variable will be further discussed in the forthcoming sections. 

 

Table 5-11: Driver Ejection by Injury Severity for Vehicle-driver Sections 1 and 2 

Driver-vehicle section 1 Driver-vehicle section 2 
Ejected1 Severe driver1 

Total Pct Frequency Non-
severe Severe (Row Pct) 

No 110866 6408 
117274 97.39% (94.54) (5.46) 

Yes or 
partial 

1834 1313 
3147 2.61% (58.28) (41.72) 

Total 112700 7721 120421 100.00% Percent 93.59% 6.41% 
Test of independence p-value=<.0001, 
Contingency Coefficient=0.2361 

 

Ejected2 Severe driver2 
Total Pct Frequency Non-

severe Severe (Row Pct) 

No 118833 6285 
125118 97.89% (94.98) (5.02) 

Yes or 
partial 

1756 945 
2701 2.11% (65.01) (34.99) 

Total 120589 7230 127819 100.00% Percent 94.34% 5.66% 
Test of independence p-value=<.0001, 
Contingency Coefficient=0.1866 

 

 

 

Ejection of the driver was found to be the most important variable affecting injury 

severity in the exploratory models. However, this is considered a post-crash event and in the 

exploratory models showed a propensity to cause numerical (quasi-separation) problems in some 

cases. This factor has been extensively considered in injury severity analysis on the interest of 

predicting its occurrence or effect on injury severity. As shown in Table 5-11, almost half of 

those drivers ejected in section 1 suffered severe injury. Given that the steering wheel turns into 

a source of injury, drivers without seat belts are expected to sustain higher degrees of injury. 
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Driver ejection has been primarily associated as a consequence of seat belt non-usage. However, 

it is not an exclusive determinant of severe injury.  

As suggested by the reduced severe injury percentage for the drivers in section 2, driver 

ejection has been considered as an important part of the sequence of events in a roadside crash. 

Possible interactions are tested in the final analysis to investigate how this outcome is related to 

some crash precursors. 

 

Table 5-12: Driver Contributing Cause by Injury Severity for Vehicle-driver Sections 1 and 2 

Driver-vehicle section 1 Driver-vehicle section 2 
Contributing 

Cause1 Severe driver1 
Total Pct Frequency Non-

severe Severe (Row Pct) 
No improper  
driver action 

15244 625 
15869 13.18% (96.06) (3.94) 

Aggressive 
driving 

32847 2484 
35331 29.34% (92.97) (7.03) 

Alcohol / 
Drugs 

1828 207 
2035 1.69% (89.83) (10.17) 

Other 62781 4405 
67186 55.79% (93.44) (6.56) 

Total 112700 7721 120421 100.00% Percent 93.59% 6.41% 
Test of independence p-value=<.0001, 
Contingency Coefficient=0.0441 

 

Contributing 
Cause2 Severe driver2 

Total Pct Frequency Non-
severe Severe (Row Pct) 

No improper 
driver action 

104122 6241 
110363 86.34% (94.35) (5.65) 

Aggressive 
driving 

4900 275 
5175 4.05% (94.69) (5.31) 

Alcohol / 
Drugs 

183 43 
226 0.18% (80.97) (19.03) 

Other 11384 671 
12055 9.43% (94.43) (5.57) 

Total 120589 7230 127819 100.00% Percent 94.34% 5.66% 
Test of independence p-value=<.0001, 
Contingency Coefficient=0.0245 

 

 

 

This parameter represents the most common driver actions that contribute to a crash, as 

reported by the police officer. The major categories used in this investigation were aggressive 

driving and alcohol/drug influence. Other categories had sparse data and would not provide 

practical results in the models used in the final analysis. As shown in Table 5-12, aggressive 

driving is an important factor in severe crashes, especially for the driver 1 section; 18.45% of the 
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severe injuries driver involvements involved aggressive driving. However, when we compare the 

29.34% aggressive driving involvements in section 1 with 4.05% in driver section 2, there is a 

possible bias in driver section a towards innocent (no improper action) drivers. The actions 

constituting aggressive driving include speeding, failed to yield right-of-way, improper lane 

change, followed too closely, improper passing and disregarded other traffic control. The 

implications of the differences found between drivers sections 1 and 2 are further discussed in 

Section 5.3. 

 

Table 5-13: Driver Physical Defects by Injury Severity for Vehicle-driver Sections 1 and 2 

Driver-vehicle section 1 Driver-vehicle section 2 
Physical 
Defects1 Severe driver1 

Total Pct 
Frequency Non-

severe Severe (Row Pct) 

No 109808 7322 
117130 97.27% (93.75) (6.25) 

Yes 2892 399 
3291 2.73% (87.88) (12.12) 

Total 112700 7721 120421 100.00% Percent 93.59% 6.41% 
Test of independence p-value=<.0001, 
Contingency Coefficient=0.0391 

 

Physical 
Defects2 Severe driver2 

Total Pct 
Frequency Non-

severe Severe (Row Pct) 

No 119465 7163 
126628 99.07% (94.34) (5.66) 

Yes 1124 67 
1191 0.93% (94.37) (5.63) 

Total 120589 7230 127819 100.00% Percent 94.34% 5.66% 
Test of independence p-value=0.963, 
Contingency Coefficient=-0.0001 

 

 

 

The physical condition of a driver is expected to be a contributing factor in crashes. It 

was tested in the final analysis to find out whether this uncommon occurrence does have a 

significant impact in driver injury severity. The proportion of severe driver injury severity for 

section 1 is more than 12%, which is the highest for any variable reviewed so far (see Table 

5-13). Most of the physiological conditions listed as defects are related to sight, hearing and 

fatigue. However, in the preliminary analysis other conditions such as, seizure, epilepsy or 
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blackout registered above 20% severe injuries, the largest contributor to severe injuries due to 

the physical defects. 

5.2.1.2 Crash and Vehicle-related Variables 

In this section, some of the important variables from the exploratory models are 

examined. The effect of single and multiple vehicle crash involvements in driver injury severity 

is examined. Also, the main crash types found on high-speed multilane arterials are discussed. 

 

Table 5-14: Crash Harmful Event by Injury Severity for Vehicle-driver Sections 1 and 2 

Driver-vehicle section 1 Driver-vehicle section 2 
Harmful 
Event 

Group1 
Severe driver1 

Total Pct 
Frequency Non-

severe Severe (Row Pct) 

Rear-End 46732 1410 
48142 39.98% (97.07) (2.93) 

Head-On 2120 296 
2416 2.01% (87.75) (12.25) 

Angle 23953 2209 
26162 21.73% (91.56) (8.44) 

Left Turn 13342 1138 
14480 12.02% (92.14) (7.86) 

Right Turn 1446 47 
1493 1.24% (96.85) (3.15) 

Sideswipe 5524 213 
5737 4.76% (96.29) (3.71) 

Fixed Object 4208 775 
4983 4.14% (84.45) (15.55) 

Other 15375 1633 
17008 14.12% (90.40) (9.60) 

Total 112700 7721 120421 100.00% Percent 93.59% 6.41% 
Test of independence p-value=<.0001, 
Contingency Coefficient=0.1403 

 

Harmful 
Event 

Group2 
Severe driver2 

Total Pct 
Frequency Non-

severe Severe (Row Pct) 

Rear-End 28344 1320 
29664 23.21% (95.55) (4.45) 

Head-On 2175 270 
2445 1.91% (88.96) (11.04) 

Angle 16082 1561 
17643 13.80% (91.15) (8.85) 

Left Turn 4790 420 
5210 4.08% (91.94) (8.06) 

Right Turn 584 20 
604 0.47% (96.69) (3.31) 

Sideswipe 4308 138 
4446 3.48% (96.90) (3.10) 

Fixed Object 1726 184 
1910 1.49% (90.37) (9.63) 

Other 62580 3317 
65897 51.55% (94.97) (5.03) 

Total 120589 7230 127819 100.00% Percent 94.34% 5.66% 
Test of independence p-value=<.0001, 
Contingency Coefficient=0.0775 
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As presented in Table 5-14, page 147, the main types of collisions reported on the crash 

data under study are rear-end, angle and left turn crashes. Angle crashes are the highest 

contributors to severe injuries, accounting for 25.21% of the total, followed by the rear-end 

crashes (18.25%) and left turn crashes (10.4%). The proportions of crash types are clearly 

different in sections 1 and 2, more so for the left turn crashes. The fixed object crashes are still 

an important contributor to 6.41% of the severe injuries. Fixed object total involvements are one-

tenth of the rear-ends, yet their corresponding severe injuries involvements are half of those 

attributed to rear-end in section 1. The final analysis included injury severity models by the four 

most important crash types (angle, rear-end, left turn and fixed object) which account for 60.31% 

of the driver severe injury involvements. 

 

Table 5-15: Crash Point of Impact by Injury Severity for Vehicle-driver Sections 1 and 2 

Driver-vehicle section 1 Driver-vehicle section 2 
Point 

impact1 Severe driver1 
Total Pct Frequency Non-

severe Severe (Row Pct) 
Not driver's 

side 
102882 6403 

109285 90.75% (94.14) (5.86) 

Driver's side 9818 1318 
11136 9.25% (88.16) (11.84) 

Total 112700 7721 120421 100.00% Percent 93.59% 6.41% 
Test of independence p-value=<.0001, 
Contingency Coefficient=0.0707 

 

Point 
impact2 Severe driver2 

Total Pct Frequency Non-
severe Severe (Row Pct) 

Not driver's 
side 

109198 6216 
115414 90.29% (94.61) (5.39) 

Driver's 
side 

11391 1014 
12405 9.71% (91.83) (8.17) 

Total 120589 7230 127819 100.00% Percent 94.34% 5.66% 
Test of independence p-value=<.0001, 
Contingency Coefficient=0.0357 

 

 

 

The point of impact is a surrogate measure of the crash mechanism. During the 

exploratory analysis, the best variable setting was to compare driver side impacts to every other 

point of impact. Driver side impacts are more likely in turn (left or right) and angle crashes, thus 

these are expected to be associated with higher driver injury severity. Table 5-15 shows the 



149 

effect of single vehicle crashes in the proportion of severe crashes. There are 30% more severe 

injuries for drivers in section 1 when compared to section 2, if the impact is on the driver side. 

When the impact is not on the driver side, the difference is much less. This suggests that certain 

crash configurations at intersections should be examined more closely. This will be discussed in 

Section 5.4, with examples of interactions tested in the final analysis. 

 

Table 5-16: Crash Vehicle Maneuver by Injury Severity for Vehicle-driver Sections 1 and 2 

Driver-vehicle section 1 Driver-vehicle section 2 
Vehicle 

Maneuver1 Severe driver1 
Total Pct Frequency Non-

severe Severe (Row Pct) 
Straight 
Ahead 

69870 4987 
74857 62.16% (93.34) (6.66) 

Slowing / 
Stopping 

20988 1742 
22730 18.88% (92.34) (7.66) 

Left Turn 4290 141 
4431 3.68% (96.82) (3.18) 

Changing 
Lanes 

5688 326 
6014 4.99% (94.58) (5.42) 

Other 11864 525 12389 10.29% (95.76) (4.24) 
Total 112700 7721 

120421 100.00% Percent 93.59% 6.41% 
Test of independence p-value=<.0001, 
Contingency Coefficient=0.0457 

 

Vehicle 
Maneuver2 Severe driver2 

Total Pct Frequency Non-
severe Severe (Row Pct) 

Straight 
Ahead 

60663 4491 
65154 50.97% (93.11) (6.89) 

Slowing / 
Stopping 

8908 621 
9529 7.46% (93.48) (6.52) 

Left Turn 2471 68 
2539 1.99% (97.32) (2.68) 

Changing 
Lanes 

1255 51 
1306 1.02% (96.09) (3.91) 

Other 47292 1999 49291 38.56% (95.94) (4.06) 
Total 120589 7230 

127819 100.00% Percent 94.34% 5.66% 
Test of independence p-value=<.0001, 
Contingency Coefficient=0.0616 

 

 

 

The vehicle maneuver helps explain the crash mechanism. The settings for this variable 

were changed slightly after analyzing some early results of the final analysis. One of the 

situations shown in  Table 5-16 is that the left turns and changing lanes, which were used in the 

exploratory analysis, did not have enough involvements for regression modeling (by crash type). 

It was decided to combine the turning left, right and U-turn maneuvers (angle), as well as 

slowing/stopped and backing maneuvers (rear-end) due to their similar crash mechanism. The 
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changing lanes maneuver was included in the others category. These results also show similar 

proportions of severe driver injury associated with the straight ahead and the slowing/stopping 

maneuvers. This may be due to the dominance of rear-end crashes and operating speeds lower 

than freeways, resulting in similar injury outcomes for the striking vehicle and the struck vehicle 

drivers. A lower proportion of drivers making the left turn (3.18% in section1, 2.68% in section 

2) experienced severe injuries when compared to the drivers involved in left turn crashes (7.86% 

and 8.06% of drivers in sections 1 and 2, respectively). This suggests that in general drivers 

making a left turn are less likely to sustain severe injury than those hitting their vehicle.  

 

Table 5-17: Private Vehicle Use by Injury Severity for Vehicle-driver Sections 1 and 2 

Driver-vehicle section 1 Driver-vehicle section 2 
Private 

vehicle use1 Severe driver1 
Total Pct Frequency Non-

severe Severe 
(Row Pct) 

No 7401 222 
7623 6.33% (97.09) (2.91) 

Yes 105299 7499 
112798 93.67% (93.35) (6.65) 

Total 112700 7721 120421 100.00% Percent 93.59% 6.41% 
Test of independence p-value=<.0001, 
Contingency Coefficient=0.0371 

 

Private 
vehicle use2 Severe driver2 

Total Pct Frequency Non-
severe Severe (Row Pct) 

No 8320 271 
8591 6.72% (96.85) (3.15) 

Yes 112269 6959 
119228 93.28% (94.16) (5.84) 

Total 120589 7230 
127819 100.00% Percent 94.34% 5.66% 

Test of independence p-value=<.0001, 
Contingency Coefficient=0.0291 

 

 

 

The relationship between vehicle use and severe crash injury may help certain 

countermeasures. Even tough it was not found significant in the exploratory models; it is the 

interest of this investigation to find if there is a relationship between this variable and the average 

truck volume factor. Also, another concern is how drivers in private vehicle found at-fault are 

associated with severe crash injury. These are investigated in the final analysis in Section 5.4. It 

is important to determine if the commercial transportation or freight has an important effect on 
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severe driver injuries on high-speed multilane roads. From the information in Table 5-17, page 

150, the percentages of non-private vehicle drivers with severe crashes are significantly less than 

those in private vehicles. It is yet to be determined if those crashes involving trucks are a major 

cause of severe injuries. 

5.2.1.3 Roadway and Environment-related Variables 

Some roadway and environmental characteristics were found significant in the 

exploratory models. In that analysis, the roadway characteristics had more relative significance 

than the environment-related variables. The road surface condition was found significant, but not 

the weather variable. This suggests that the severe injury outcome is affected to a degree by 

roadway characteristics that could be improved by engineers in the design, construction and 

maintenance of high-speed multilane arterial corridors. On the other hand, weather-related 

variables are indirectly related to the road surface conditions, the friction course and skid 

resistance. This interaction is appreciated in the wet pavement crash analysis discussed ahead. 

 

Table 5-18: Road Speed Limit by Injury Severity for Vehicle-driver Sections 1 and 2 

Driver-vehicle section 1 Driver-vehicle section 2 
Speed limit1 Severe driver1 

Total Pct Frequency Non-
severe Severe (Row Pct) 

Less than 40 
mph 

6133 635 
6768 5.62% (90.62) (9.38) 

40-45 mph 88378 4766 93144 77.35% (94.88) (5.12) 

50-55 mph 15193 1657 16850 13.99% (90.17) (9.83) 

60-70 mph 2996 663 3659 3.04% (81.88) (18.12) 
Total 112700 7721 120421 100.00% Percent 93.59% 6.41% 

Test of independence p-value=<.0001, 
Contingency Coefficient=0.1118 

 

Speed limit2 Severe driver2 
Total Pct Frequency Non-

severe Severe (Row Pct) 
Less than 40 

mph 
4436 466 4902 3.84% (90.49) (9.51) 

40-45 mph 97345 5036 102381 80.10% (95.08) (4.92) 

50-55 mph 16238 1387 17625 13.79% (92.13) (7.87) 

60-70 mph 2570 341 2911 2.28% (88.29) (11.71) 
Total 120589 7230 127819 100.00% Percent 94.34% 5.66% 

Test of independence p-value=<.0001, 
Contingency Coefficient=0.0685 
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Figure 5-1: Video Log Snapshot of an Arterial Corridor with 65 mph Speed Limit: State Road 10 in Gadsen 
County (RDWYID 50030000 Direction: East MP: 6.57)  

 

The speed limit of a road is one of the most important design parameters and controls 

other aspects not seen in the crash information analyzed in this investigation. This analysis is 

limited to high-speed multilane arterials. However, the crashes at intersections involve other 

roads with speed limits different from those of the arterials. The multilane arterial corridors with 

speed limits of 40 and 45 mph carry a major proportion (65.56%) of the severe injuries (refer to 

Table 5-18, page 151). However, the proportions of severe injuries for roads with higher speeds 

range from 7.87% to 18.12%, which suggest an increased severe injury risk for crash 

involvements in higher speed (50-70 mph) roads. On the other hand the proportion of severe 

injuries for the minor roads (less than 40 mph) remains almost equal across driver sections 
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(9.38% and 9.51%). This shows an increased risk for the minor roads, but not as high as the one 

for the higher speed roads (especially 60-70 mph).  

Another area of interest was the injury severity outcome for drivers entering the arterial 

corridor from other intersecting roads. Table 5-18, page 151, shows a considerable increase in 

the proportion of severe injuries for drivers on roads with higher speed limits (60-70 mph). These 

might be intersecting freeways (intersection-related crash) or 60 mph multilane arterials found in 

rural areas, such as a segment in State Road 10 in Gadsen County (refer to Figure 5-1, page 152) 

and State Road 25 in Alachua County (refer to Figure 3-1, page 54). Also, lower speed 

intersecting roads (usually minor roads) have a considerable proportion of severe driver injuries. 

A possible interaction between contributing cause and the speed limits was investigated in the 

final analysis to determine whether engineering or educational countermeasures would be more 

effective in these two cases, which amount to 14% of the total severe injuries in this analysis.  

 

Table 5-19: Road Lighting Condition by Injury Severity for Vehicle-driver Sections 1 and 2 

Driver-vehicle section 1 Driver-vehicle section 2 
Lighting 

Condition Severe driver1 
Total Pct Frequency Non-

severe Severe (Row Pct) 
Daylight / 

Dusk / Dawn 
82768 5132 

87900 72.99% (94.16) (5.84) 
Dark with 

street 
lighting 

24493 1707 
26200 21.76% (93.48) (6.52) 

Dark without 
street 

lighting 

5439 882 
6321 5.25% (86.05) (13.95) 

Total 112700 7721 
120421 100.00% Percent 93.59% 6.41% 

Test of independence p-value=<.0001, 
Contingency Coefficient=0.0731 

 

Lighting 
Condition Severe driver2 

Total Pct Frequency Non-
severe Severe (Row Pct) 

Daylight / 
Dusk / Dawn 

88696 5221 
93917 73.48% (94.44) (5.56) 

Dark with 
street 

lighting 

26393 1449 
27842 21.78% (94.80) (5.20) 

Dark without 
street 

lighting 

5500 560 
6060 4.74% (90.76) (9.24) 

Total 120589 7230 
127819 100.00% Percent 94.34% 5.66% 

Test of independence p-value=<.0001, 
Contingency Coefficient=0.0352 
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Changes in lighting conditions on high-speed multilane arterial corridors were a 

contributing factor with moderate to minor relevance in the exploratory analysis. Road lighting 

maintenance and its importance in preventing severe crashes at night has been a recent topic of 

discussion for the FDOT. High-speed multilane roads under state jurisdictions are more likely to 

have better lighting conditions, especially in urban areas. Better lighting conditions keep the 

drivers severe injuries in proportions of 6.52% (driver 1) and 5.20% (driver 2), comparable to 

daylight crashes for both driver sections (refer to Table 5-19, page 153). The prejudicial effects 

of lack of street lighting are evident. The proportion of severe crashes at night when there is no 

lighting (13.95% for driver 1 and 9.24% for driver 2) is almost double the daylight rates. The 

benefits of improvements in street lighting could potentially reduce up to 238 severe crashes 

each year, when holding all other conditions constant. This figure is just an incomplete estimate 

because it does not include the driver sections other than the first two, but it is nonetheless 

significant when considering the total costs of severe crashes. Additional data from RCI will 

better describe these benefits in the final analysis. 

 

Table 5-20: Rural and Urban Land Use by Injury Severity for Vehicle-driver Sections 1 and 2 

Driver-vehicle section 1 Driver-vehicle section 2 
Rural/Urban Severe_driver1 

Total Pct Frequency Non-
severe Severe 

(Row Pct) 

Rural 51848 4502 
56350 46.79% (92.01) (7.99) 

Urban 60852 3219 
64071 53.21% (94.98) (5.02) 

Total 112700 7721 120421 100.00% Percent 93.59% 6.41% 
Test of independence p-value=<.0001, 
Contingency Coefficient=-0.0604 

 

Rural/Urban Severe driver2 
Total Pct Frequency Non-

severe Severe (Row Pct) 

Rural 55633 3930 
59563 46.60% (93.40) (6.60) 

Urban 64956 3300 
68256 53.40% (95.17) (4.83) 

Total 120589 7230 127819 100.00% Percent 94.34% 5.66% 
Test of independence p-value=<.0001, 
Contingency Coefficient=-0.0381 
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The literature agrees on the importance of the land use in certain road and traffic 

conditions that affect crash occurrence and severity. In the exploratory models it was a 

significant contributing factor. Many design characteristics and traffic conditions depend on the 

land use and Table 5-20, page 154, shows that crashes occurring in rural areas account for 

56.40% of the severe crashes in this analysis. Meanwhile more crash involvements were reported 

in urban areas, which account for 53% of the driver involvements.   Of the crash involvements 

occurring on roads in rural areas, 7.99% (section 1) and 6.60% (section 2) result in severe 

injuries. The relative severe involvement ratio between the drivers involved in rural and urban 

crashes is 1.48 for all the involvements under study. Excluding other factors, there is 1.48 times 

the chance of a severe injury per driver involvement on roads in rural areas vs. each involvement 

on roads in urban areas. It could be inferred that a set of conditions in the rural areas contribute 

to a significantly higher rates of severe involvements. Other design characteristics will 

complement these results and point to effective countermeasures tailored to different land uses.  

 

Table 5-21: Type of Shoulder by Injury Severity for Vehicle-driver Sections 1 and 2 

Driver-vehicle section 1 Driver-vehicle section 2 
Type of 

Shoulder  Severe driver1 
Total Pct 

Frequency Non-
severe Severe (Row Pct) 

Paved 26270 1780 
28050 23.29% (93.65) (6.35) 

Unpaved 28394 2508 
30902 25.66% (91.88) (8.12) 

Curb 58036 3433 
61469 51.05% (94.42) (5.58) 

Total 112700 7721 
120421 100.00% Percent 93.59% 6.41% 

Test of independence p-value=<.0001, 
Contingency Coefficient=0.0427 

 

Type of 
Shoulder  Severe driver2 

Total Pct 
Frequency Non-

severe Severe (Row Pct) 

Paved 26812 1568 
28380 22.20% (94.47) (5.53) 

Unpaved 29603 2027 
31630 24.75% (93.59) (6.41) 

Curb 64174 3635 
67809 53.05% (94.64) (5.36) 

Total 120589 7230 
127819 100.00% Percent 94.34% 5.66% 

Test of independence p-value=<.0001, 
Contingency Coefficient=0.0189 

 

 



156 

Another road characteristic found significant in the exploratory models was the type of 

shoulder. Outside shoulders have been incorporated into road design mainly as a safety feature, 

but it has also proven to facilitate traffic flow as a rest area for incident management. Crashes on 

roads with curb shoulders report lower proportions of severe injuries, while roads with unpaved 

shoulders register the highest percentages (between 6.4 and 8.1 %) (refer to Table 5-21, page 

155). The lack of paved shoulder is suspected to be a contributor to roadside single vehicle 

crashes, which tend to cause severe injury. Curb shoulders close to the edge of the traveled way 

are dangerous at high speeds. However, the presence of curb and gutter also indicate urban 

designs, which usually are better illuminated, carry more traffic and have lower operating speeds. 

These unobserved factors might be part of the perceived benefit of curbed shoulders. The 

shoulder width data may clarify the relationship between shoulders and driver injury severity. 

 

Table 5-22: Road Surface Conditions by Injury Severity for Vehicle-driver Sections 1 and 2 

Driver-vehicle section 1 Driver-vehicle section 2 
Road Surface 

Condition  Severe driver1 
Total Pct 

Frequency Non-
severe Severe (Row Pct) 

Dry 94456 6687 
101143 83.99% (93.39) (6.61) 

Wet 17118 969 
18087 15.02% (94.64) (5.36) 

Slippery 749 44 
793 0.66% (94.45) (5.55) 

Icy 36 5 
41 0.03% (87.80) (12.20) 

Other 341 16 
357 0.30% (95.52) (4.48) 

Total 112700 7721 120421 100.00% Percent 93.59% 6.41% 
Test of independence p-value=<.0001, 
Contingency Coefficient=0.0195 

 

Road Surface 
Condition  Severe driver2 

Total Pct 
Frequency Non-

severe Severe (Row Pct) 

Dry 101900 6255 
108155 84.62% (94.22) (5.78) 

Wet 17614 913 
18527 14.49% (95.07) (4.93) 

Slippery 713 41 
754 0.59% (94.56) (5.44) 

Icy 38 3 
41 0.03% (92.68) (7.32) 

Other 324 18 
342 0.27% (94.74) (5.26) 

Total 120589 7230 127819 100.00% Percent 94.34% 5.66% 
Test of independence p-value=0.0002, 
Contingency Coefficient=0.0131 
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The road surface condition reflects the prevailing weather conditions. Although the 

relative importance of this variable is lower than the rest, it might prove to be an important 

interaction term. Also, around the state of Florida severe weather events such as rainstorms are 

common. Weather conditions have been found significant in previous studies of injury severity. 

The proportions of severe injuries were not higher for adverse weather conditions than for dry 

conditions (refer to Table 5-22, page 156). The variable in the models combined the slippery or 

icy conditions to avoid sparse values.  

 

Table 5-23: Traffic Control by Injury Severity for Vehicle-driver Sections 1 and 2 

Driver-vehicle section 1 Driver-vehicle section 2 
Traffic 
Control Severe driver1 

Total Pct Frequency Non-
severe Severe (Row Pct) 

Other or 
none 

57080 4208 
61288 50.89% (93.13) (6.87) 

Traffic signal 
or yield 

46769 2592 
49361 40.99% (94.75) (5.25) 

Stop sign or 
flash lights 

8851 921 
9772 8.11% (90.58) (9.42) 

Total 112700 7721 120421 100.00
% Percent 93.59% 6.41% 

Test of independence p-value=<.0001, 
Contingency Coefficient=0.0481 

 

Traffic 
Control Severe driver2 

Total Pct Frequency Non-
severe Severe (Row Pct) 

Other or none 59707 3332 
63039 49.32% (94.71) (5.29) 

Traffic signal 
or yield 

51084 2998 
54082 42.31% (94.46) (5.54) 

Stop sign or 
flash lights 

9798 900 
10698 8.37% (91.59) (8.41) 

Total 120589 7230 127819 100.00% Percent 94.34% 5.66% 
Test of independence p-value=<.0001, 
Contingency Coefficient=0.0364 

 

 

 

Another important road variable is the traffic control at intersections. For high-speed 

multilane roads, the intersections with minor roads are generally controlled by either stop signs 

or traffic signals. Preliminary analysis in Section 4.1.3 showed a trend of increased severe 

injuries for the urban signalized intersections and rural unsignalized intersections. The statistics 

shown in Table 5-23 denote the trends of decreased proportions of severe injuries for the 

signalized intersections. Meanwhile, the stop controlled intersections exhibited significantly 
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higher proportions of severe injuries (9.42% and 8.41% for sections 1 and 2, respectively). In 

addition, a smaller number of uncontrolled intersections are included with the road segments 

(without traffic control or speed limit control). These are captured in the intersection models and 

possible interactions in the final analysis. The comparison between the stop controlled and the no 

control yields a severe involvement ratio of 1.47. Excluding other factors, there is 1.47 times the 

chance of a severe injury per driver involvement at stop controlled intersections vs. each 

involvement at segments or uncontrolled intersections. The stop controlled involvements 

resulting in severe injuries represent 12% of the total severe injuries. Improvements at these 

intersections may have a large potential benefit. 

After reviewing the exploratory analysis results, it was suspected that crashes reported as 

yield control in high-speed multilane roads were highly correlated to a traffic signal (right turn 

lane yield). In a sample from one year of crash data from five arterial corridors in two different 

counties; almost 50% of the crashes were in fact located at a right turn lane at a signalized 

intersection (see Table 5-24). The sample was deemed acceptable given the fact that yield 

control crashes represent less than 2% of the total crashes. In addition, flashing beacon control 

was found to have a correlation with the stop control crashes. Therefore, these two cases were 

grouped in the traffic control variable. 

 

Table 5-24:  Traffic Control Observed for a Sample of Crashes Recorded as Yield Control (N=49) 

Type of traffic control Percent 
Traffic Signal 48.98% 
Yield at ramp 12.24% 
Yield at median 16.33% 
Stop Control 4.08% 
Yield in minor road 8.16% 
Not applicable 10.20% 
Total 100.00% 
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5.2.2 Continuous Variable Analysis and Variable Transformation 

5.2.2.1 Continuous Variable Analysis 

There was a group of continuous distributions for some variables that are related to the 

driver-, traffic-, and roadway-related factors that affect crashes and their outcomes. First, some 

descriptive statistics helped ascertain the scaling of these variables (see Table 5-25). The means, 

standard deviation and ranges of the variables are similar for both driver section 1 and 2. 

Histograms of these variables were also examined and no major differences were found between 

the distributions of drivers section 1 and 2. Since all of these variables are road- or traffic-related, 

no major differences are expected when comparing vehicle-driver sections. 

 

Table 5-25: Descriptive Statistics for Continuous Variables 

Driver-vehicle section 1 

Variable N Mean 
Std 
Dev Sum Minimum Maximum 

adt per lane (in thousands) 119946 8.11194 2.83967 972994 0.32 36.5 

Median width (ft) 119946 25.2499 12.5586 3028624 2 148 

Avg Truck Factor (%) 119946 5.94562 4.05988 713153 0 54.57 

Skid Resistance Number 119946 36.82425 5.10355 4416921 2 68 

Surface width (ft) 119946 29.99503 6.66249 3597784 18 60 

Shoulder width (ft) 119946 3.48623 2.19078 418159 0 21 
 

 
Driver-vehicle section 2 

Variable N Mean Std Dev Sum Minimum Maximum 
adt per lane (in thousands) 127345 8.21907 2.77156 1046658 0.32 36.5 

Median width (ft) 127345 24.95359 12.23325 3177715 2 148 

Avg Truck Factor (%) 127345 5.78039 3.72408 736104 0 54.57 

Skid Resistance Number 127345 36.83053 5.0753 4690184 2 68 

Surface width (ft) 127345 30.24613 6.6807 3851694 18 60 

Shoulder width (ft) 127345 3.45205 2.18685 439601 0 21 
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A total of 949 records were eliminated from the sample due to data error or extreme 

values, as explained below. The adt per lane variable is the ratio of adt divided by the number of 

lanes of the main road section, divided by 1,000. The scaling of the variables was to avoid very 

high coefficient values in the regression models. Median width is defined by the RCI Field 

Manual as  the distance (in ft) from inside edge of closest painted line (or through pavement 

edge) at one side of the median and measured straight across to the inside edge of the closest 

painted line (or through pavement edge) on the opposite side (FDOT, 2007). The media width 

distribution had an average of about 25 ft, which is a respectable figure in terms of road 

separation. Median width values above 150 ft were considered extreme and 294 records were 

excluded from the final sample. The average truck factor (AVGTFACT) is 5.94%, which 

indicates the important heavy truck activity taking place on Florida arterials that is present as a 

contributing factor in the preliminary models.  

The main measurement of pavement friction used in the United States is the friction 

number (FN), also called skid number. Skid resistance is usually expressed as the static friction 

coefficient multiplied by 100 (1). The testing to obtain this measurement is usually performed 

using the locked wheel tester (ASTM E-274) which waters the pavement while locking a fifth 

wheel attached to a vehicle at the predetermined test speed, to simulate emergency braking. The 

skid resistance numbers (nSKTRESNM) are in a scale of 1 to 100 in the RCI data for the road 

section. The number available in the CAR database is the average along the section of road 

tested. The average skid number is above 35, which is deemed acceptable, as detailed in the next 

section.  

According to the RCI Field Manual, the surface width (nSURWIDTH) on a divided 

highway is the pavement width between the edge of the inside through lane and the outer edge of 
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through lane pavement at the outside shoulder (FDOT, 2007). The expected values for two lanes 

on each side of the road are of at least 18 ft. A total of 655 records with values less than 18 ft 

were discarded to avoid data error. The most common values observed during the graphical 

analysis were 24, 36 and 48 ft, which correspond to two, three, and four lanes of 12 ft on each 

side of the road.  

Shoulder width (in ft) is measured from the outer edge of the outside lane stripe to the 

outer edge of the shoulder. The RCI shoulder data most widely available are for paved shoulders 

and the nSLDWIDTH data in CAR do not include unpaved shoulders. Although there was 

information for other kinds of shoulders as separate variables, the data were too sparse and 

sometimes conflicting and was not used. An average shoulder width of 3.5 ft is not the 

recommended for neither urban nor rural areas, but there is a large variability, as suggested by 

the 2.1 ft standard deviation. Inside shoulder information was very limited and not included in 

this analysis.  

 

Table 5-26: Pearson Correlations and Independence Test for Continuous Variables  

Pearson Correlation Coefficients 
Prob > |r| under H0: Rho=0 

  Severe_driver1 
(n=119,946) 

Severe_driver2 
(n=127,345) 

adt per lane (in 
thousands) 

-0.07205 -0.04231 
<.0001 <.0001 

Median width (ft) 
0.06394 0.02866 
<.0001 <.0001 

Avg Truck Factor 
(%) 

0.07333 0.0312 
<.0001 <.0001 

Skid Resistance 
Number 

0.03207 0.02045 
<.0001 <.0001 

Surface width (ft) 
-0.03835 -0.01193 
<.0001 <.0001 

Shoulder width (ft) 
0.0364 0.01658 
<.0001 <.0001 
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The Pearson correlations for these variables were tested with relation to the driver injury 

severity in each of the two sections under analysis. The results of the statistical tests are shown in 

Table 5-26, page 161. All the tested variables were found to have significant correlation to the 

driver injury severity variable, but when we compared the correlation coefficients, we can clearly 

see the strongest (and negative) correlation of adt per lane, which indicates that increased traffic 

volumes decreased the severe driver injuries. Smaller roads (nSURWIDTH-less lanes) indicated 

decreased numbers of severe injuries. On the other hand, median width had the strongest positive 

correlation, with increased median widths indicative of higher severe injuries. Likewise, larger 

values of the average truck factor, shoulder width and skid resistance number variables led to 

increased severe injury values. The implications of these effects are discussed in the model 

analysis section. 

5.2.2.2 Continuous Variable Transformations 

Some of the continuous variables were combined into groups or categories to better 

describe these factors in an injury severity model. Some of the issues that will be discussed 

include scaling, valid values (range), and justification for use of continuous distributions for 

some variables that could have been discrete. In addition, this section briefly outlines the 

reasoning for the categories selected for the models. Among the main methods used were: 

exploratory regression analysis, categorical data analysis, results from previous studies, design 

guidelines and standards. These methods were not used in an absolute fashion, rather a scientific 

process of inquiry through a series of steps led to an informed decision. Driver-, road- and 

environment-related continuous factors were transformed from continuous to categorical in order 

to enhance their interpretative power in the injury severity models. 
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The driver age variable has been briefly discussed previously. The choice of driver age 

groups was primarily based on the previous studies using Florida crash and driver data, such as 

those used by Abdel-Aty et al. (1998). The cutoff values for drivers as very young (15-19 years 

old), young (20-24 years old), middle (25-64 years old), old (65-79 years old), and very old (80-

98 years). The use of 99 years was avoided due to the negligible frequency (less than 1%) and 

possible data error for unknown values. 

The median width (median size) of the multilane roads should be as wide as practical to 

decrease the risk of head-on crashes and headlight glare at night. The Florida Greenbook 

standard calls for minimums (see Table 5-27). Based on these standards and after initial tests, the 

median widths equal of greater than 40 ft were tested against those less than 15 ft, between 15 

and 19.5 ft, and between 19.5 and 40 ft. 

 

Table 5-27: Minimum Median Width for Multilane Facilities (Source: Florida Greenbook, 2005) 

Rural Highways  
Design Speed (mph) Minimum Width (ft) 

55 and Over 40 
Under 55 22 

 

Urban Streets 
Design Speed (mph) Minimum Width (ft) 

50 19.5 
45 or Less 15.5 

40 or Less ** 10 
** Paved medians used for two-way turn lanes or painted medians 

 

 

The Skid Resistance number discussed previously was analyzed using different cutoff 

values based on the FDOT guidelines. Recall from Section 5.2.2.1 that skid resistance is 

expressed as the static friction coefficient multiplied by 100. Many highway agencies use the 

friction measurements for the purposes of rehabilitation, reconstruction and resurfacing of 
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pavements. There are monitoring programs in place to take action at certain predetermined 

intervention levels. The FDOT has a skid hazard elimination program has a systematic skid test 

program which covers about 25-35 percent of the Interstate and Primary Systems per year, along 

with new pavements. Also, District Safety Engineers use a report of wet weather crashes and 

determine which sections of highway with 25 percent or more wet weather crashes need skid 

tests. Depending on the test results, the FDOT guidelines are used to determine whether the skid 

hazard warrants an improvement project, there is need for further review (for new pavements up 

to 18 months) or if the skid test indicates the pavement friction is acceptable. The FDOT skid 

resistance guidelines in the Skid Hazard Reporting System Manual are shown in Table 5-28 

(FDOT, 2006). 

 

Table 5-28: FDOT Friction Number Guidelines (Source: State Safety Office, 2006) 

Posted Speed Limit 
(mph) 

All highway sections surfaces 
1 2 3 

QUESTIONABLE REVIEW DESIRED 
FN40 FN40 FN40 

Less than or equal to 45 25 26-28 30 
Greater than 45 27 28-30 35 

 

 

The values for the groups considered were analyzed and tested in preliminary regression 

models. Part of this analysis is shown in Figure 5-2 and Figure 5-3, both in page 165, which 

confirms the general increase in severe injuries as the skid number increases. Examining the 

rural area distribution, we find that there is an unexpected increase in the proportion of severe 

injuries after skid number 35. Meanwhile the urban area distribution behaves a lot closer to 
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expectations, lowering the severe crash proportions after skid number 35. Additional 

implications of these findings are discussed in the final analysis section. 
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Figure 5-2: Distribution of Severe Injuries by Skid Resistance and Land Use for All Involvements  
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Figure 5-3: Distribution of Severe Injuries by Skid Resistance and Land Use for Wet Pavement Involvements  
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The analysis of Figure 5-2 and Figure 5-3, both in page 165, confirms that the general 

increase in severe injuries as the skid number increases for both the wet pavement crashes and 

the total involvements. The wet pavement severe injury to driver involvement ratio is generally 

lower than those for the total crash involvements. This comparison is necessary to compare the 

skid resistance to the type of crashes that it aims to reduce. The relationship seems to hold for 

both wet pavement and all involvements. The implications of the sudden increase after skid 

resistance number 44 are discussed later on.  

The surface width (nSURWIDTH) variable was used in an interaction with number of 

lanes to derive a lane width variable. According to the RCI Field Handbook the surface width is 

measured across the traveled way, not including the shoulders (FDOT, 2008). The lane width 

was computed by dividing the surface width by half the number of lanes. The lane widths, as 

recommended by the Florida greenbook are 12 ft for major arterials and 11 ft for minor arterials. 

The minimum width in the standard is 10 ft; however, there is a significant number (8.59%) of 

driver crash involvements in roads with lanes less than 10 ft wide (see Table 5-29). This is a 

particular concern for the sections of road that are not complying with the current standards and 

their effect on the safety performance of important arterial corridors in the state.  

 

Table 5-29: Driver Crash Involvements in High-speed Multilane Roads by Lane Width Group 

Lane width group Frequency Percent 
Lane width < 10 ft 9323 8.59 

10 ft ≤ Lane width < 11 ft 6252 5.76 
11 ft ≤ Lane width ≤ 12 ft 80889 74.56 

Lane width > 12 ft 12030 11.09 
Total 108494 100 
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The Florida greenbook recommends shoulders 10 ft wide in all roads. A minimum of 6 ft 

is required for roads with open drainage, while 8 ft is required for roads with heavy traffic 

volumes or a significant volume of truck traffic. The cutoff values for the shoulder width groups 

reflect this policy. An overwhelming majority (89.52%) of the driver crash involvements 

occurred on roads with shoulder less than 6 ft wide (see Table 5-30). Very similar proportions 

were found for the severe injuries. Another concern is that roads with larger shoulders have a 

little higher proportion of driver involvements. The wider road space has been associated with 

higher operating speeds, which in turn result in higher severe injury counts. 

 

Table 5-30: Driver Crash Involvements in High-speed Multilane Roads by Shoulder Width Group 

Shoulder width groups Frequency Percent 
Shoulder width < 6 ft 97120 89.52 

6 ft ≤ Shoulder width < 8 ft 3548 3.27 
8 ft ≤ Shoulder width < 10 ft 3128 2.88 

Shoulder width ≥ 10 ft 4698 4.33 
 

 

The time variable was reduced to a binary variable denoting what is generally considered 

day and night hours after evaluation of exploratory analysis. There are some perceived negative 

effects of the involvements at night in severe injuries (see Figure 5-4, page 168). This variable 

did not show a strong correlation in the exploratory analysis or the preliminary analysis. The 

increased importance of the road characteristics vs. the environmental variables might be 

triggered by underlying correlations between weather characteristics and road characteristics. For 

example, road lighting is correlated to visibility at night and if this variable is significant denotes 

in part the effect of night crashes in the overall safety performance of high-speed multilane 

arterials. 



168 

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Non-severe Severe

Driver injury severity

Pr
op

or
tio

n 
of

 d
riv

er
 in

vo
lv

em
en

ts

6 AM- 6 PM
6 PM- 6 AM

 
Figure 5-4: Distribution of Severe Injuries by Time of Day  

 

 

5.3 Preliminary Regression Analysis 

5.3.1 Severity Analysis by Road Entity 

The driver injury severity distributions for each road entity selected for the analysis (see 

Section 3.6) was examined using the FDHSMV database (years 2002-2004) to compare the 

involvements occurring on high-speed multilane roads with all the involvements. The analysis in 

Figure 5-5, page 168, shows the totals for all of the involvements. The proportion of severe 

driver injury out of all driver involvements shows that in road segments, the likelihood of a 

severe injury given a crash involvement is the highest (6.38%), while the severe injuries at 

signalized intersections are the lowest (4.62%). The variability of the severe injury ratios is 

noticeable (38%) and thus the traditional analysis has separated both the crash frequency and 

injury severity models by road entity. 
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Figure 5-5: Distribution of Severe Injuries by Road Entities as a Proportion of Driver Involvements 

 

On the other hand, the driver injuries at high-speed multilane roads exhibit a slightly 

higher severe ratio when compared to all of the involvements. The highest ratio of severe 

involvements occurred at unsignalized intersections, while the signalized intersections are the 

locations with lower ratios of severe driver injuries per involvement. This is different from the 

general perception of increased crash severity on curves and other road entities. This may be in 

part due to the less frequent roadway curves in the state arterials, when compared to other road 

types. The lowest injury to involvement ratio for the signalized intersections follows the general 

characteristic for all roads, but the ratio for high-speed multilane arterials is higher by almost 

10% when compared to signalized intersections in all roads. In fact, all the road entities 

displayed higher ratios, with the exception of the pure segment and it’s derivate. These contrasts 
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demonstrate that the high-speed multilane corridors have distinctive characteristics regarding 

their safety performance. 

These results underline the major differences in the occurrence of crashes and injury 

severity outcomes at the high-speed multilane corridors. A difference is the increase of the 

severity ratios for intersections. When we compare the severe injury distribution in all roads to 

the distribution in high-speed multilane roads, the main difference is the variability. There is 

more parity between the involvements at (or related to) intersections and those occurring in road 

segments. When comparing all intersections and pure segments, the severity ratio is practically 

the same (5.58% vs. 5.59%). This suggests that a combined analysis of intersections and non-

intersection is viable for involvements on high-speed multilane corridors. 

5.3.2 Driver Involvements Selection for Analysis 

When it is not possible to analyze all involvements for the injury severity analysis 

simultaneously, an appropriate sample must be selected. There are several alternatives to analyze 

driver involvements. One of the alternatives would be to select at-fault (or innocent) drivers as 

representative of the driving population. Another would be to select all driver involvements 

listed in section 1 (most used) of the crash report. A third alternative would be to select a sample 

of driver involvements from different sections, one for each crash. The first alternative was 

deemed inappropriate after confirming an association between driver at-fault status and the 

injury severity. The second alternative was first attempted using a sample of involvements from 

driver section 1 as a representative of all driver involvements because it includes all single and 

multiple vehicle crashes. To this end, the wide format discussed in Section 3.2.2 was prepared 
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where driver sections would be arranged in one row per crash. Then, the complete records for 

each of the two driver sections were selected for analysis.  

The results previously shown in Table 5-9, page 141, suggested a possible bias between 

driver sections and the at-fault driver status. Also, there is a concern that analysis using 

involvements from only one driver section will not be representative of the driver injury severity 

conditions of all crash involvements. First, the driver 1 and driver 2 variables were compared to 

find out if there was any apparent association between them. The last alternative was then tested 

to find out its effectiveness compared to the models already developed using a sample from one 

crash report section. The analysis previously shown in Table 5-5, page 137, indicated that a 

sampling process using driver sections 1 and 2 would be representative of the injury severity 

distribution of the total crash involvements. The discussion of the relationships between the 

driver 1 and 2 variables is presented in the next section. 

5.3.3 Vehicle-driver Sections 1 and 2 Sampling Analysis 

This analysis allowed a more detailed comparison between the variables vs. the driver 1 

and driver 2 injury severities. Eleven out of the 21 variables are considered to have strong or 

moderate association with the driver 1 injury severity, but have a weak or very weak association 

with the driver 2 injury severities. Many of these variables (i.e. vehicle (driver) at-fault, 

speeding, ejected, driver age group) were found to have a significant effect on the injury severity 

in the exploratory analysis (see Section 4.2). This suggests a possible difference between the 

driver injury mechanisms of the two groups. This is expected, as the first section includes all the 

single vehicle crash involvements, whereas section 2 does not. A second important concern was 

shown in Table 5-2, page 133, where the proportions of severely injured drivers (especially in 
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section 2) had statistical dependence with the year of statewide data selected. Minimizing 

temporal variation is very important to the validity of any further analysis.   

 

Table 5-31: Driver Crash Involvements in High-speed Multilane Roads in the Complete Sample (All 
Involvements) and the Stratified Sample 

Vehicle-driver Section Stratified Sample All involvements 
Count Percent Count Percent 

Driver 1 55569 46.78 197197 50 
Driver 2 63221 53.22 197197 50 

 

 

An alternative analysis was performed by comparing the total crash involvements of 

drivers sections 1 and 2 and a stratified random sample of the driver 1 and 2 multiple crash 

involvements. The counts of the driver involvements in the datasets used are described in Table 

5-31. The stratified sample consisted of 50% of the driver 1 and 2 involvements which had no 

missing data for the variables with significant association with the driver injury severity response 

(refer to Section 5.2). It was deemed important to keep a representative sample of the different 

driver involvements related to a single crash, while avoiding repeating crash data in the sampling 

process. 

Using the function PROC SURVEYSELECT in a three-step process, a stratified random 

sample selection of the multiple vehicle crash reports was chosen. First, half of the involvements 

from section 1 were selected. Then, records with the report numbers in the selected driver 1 

sample were deleted from the driver 2 dataset to avoid repeating crash data for the final analysis. 

Finally, a sample of 50% the original number of driver 2 involvements was selected. After 

selecting the sample of multiple crash involvements, single vehicle crash involvements were 
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added to the sample. The final proportion of single and multiple crashes just shown in Table 

5-31, page 172, were similar to those shown in Table 5-1, page 131. 

 

Table 5-32: Driver Crash Involvements in High-speed Multilane Roads by Year and Injury Severity 

Year Driver Severity 
Total Frequency Non-

severe Severe 
(Percent) 

2002 
38232 2194 40426 
(32.18) (1.85) (34.03) 

2003 
36434 2104 38538 
(30.67) (1.77) (32.44) 

2004 37779 2047 39826 
(31.80) (1.72) (33.53) 

Total 
112445 6345 118790 
(94.66) (5.34) (100.00) 

Test of independence p-value= 0.0884 
 

 

The analysis of the year to year variation of driver injury severity counts was also 

analyzed. The chi-square test of independence (see Table 5-32) resulted in a p-value greater than 

0.05; thus the null hypothesis of statistical independence is not rejected for the entire sample. 

The p-value is higher when compared to the test show in Table 5-2, page 133, which suggests an 

improvement in the resistance to yearly variation for the stratified sample. This is a very 

important advantage of the stratified sample. Rather than magnifying the yearly differences, it 

becomes more heterogeneous in terms of the driver-, vehicle-, roadway- and environment-related 

characteristics that might be contributing factors to the driver injury severity. 

Comparing the categorical analysis of the initial set of crashes and the final sample 

served to test the effects of drawing a sample of multiple crash involvements for the regression 

modeling. Additional analysis into the relationships between the driver 1 and 2 sections was 

performed by separating the single and multiple vehicle crashes. By comparing the counts of 
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some of the most important variables, we can test whether the driver 1 and driver 2 sections are 

statistically independent (assigned randomly) or if there is any systematic relationship.   

 

Table 5-33: Test of Independence between Driver Section Number and the Variables Listed (Sample 
n=118,790; Complete N= 394,394) 

Variable p-value using  
random sample 

p-value using 
complete sample 

Severe_driver_x 0.000298199 0.0002982 
Year 0.000298199 1 
Driver_Ageg_Group_x 0.177952724 <0.0001 
Gender_x <0.0001 <0.0001 
Safety_Equipment_x <0.0001 <0.0001 
Speeding_x <0.0001 <0.0001 
Contributing_Cause_x <0.0001 <0.0001 
At_Fault_driver_x <0.0001 <0.0001 
Red_light_running_x <0.0001 <0.0001 
Residence_Code_x <0.0001 0.00613153 
Physical_Defects_x 0.325869667 <0.0001 
Ejected_x <0.0001 <0.0001 
nRecommend_Re_Exam_x <0.0001 <0.0001 
nRace_x <0.0001 <0.0001 
Harmful_Event_Group_x <0.0001 <0.0001 
Off_Roadway  <0.0001 1 
Point_Impact_x <0.0001 <0.0001 
Vehicle_Maneuver_x <0.0001 <0.0001 
Type_of_Vehicle_x <0.0001 <0.0001 
Private_vehicle_use_x <0.0001 <0.0001 
CRASH_LANE5  0.003356631 1 
nRural_Urban  <0.0001 1 
Location_Type   0.751214189 1 
nVehicle_Special_Functions_x 0.00312239 <0.0001 
nFirst_Vehicle_Defect_x <0.0001 <0.0001 
nCrash_Fault_Code <0.0001 1 
nTotal_Number_of_Drivers <0.0001 1 
nWork_Area_x 0.021756961 0.49171805 
nAlcohol_Drug_Use_x 0.397420419 <0.0001 

 

 

Partial results of the tests for each driver-, vehicle- and crash-related variable vs. driver 

section number are shown in Table 5-33. Complete results are shown in Appendix B. This 

analysis used multiple-vehicle crash involvements only. When using the random sample only the 
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driver age, physical defects, location type and alcohol use variables that became significant for 

statistical dependence of the driver section. The complete results shown in Appendix B suggest 

that some possible numerical problems (quasi or complete separation) are possible if all 

involvements are used because of the repeated values of road characteristics. Some of these 

problems were apparent in the development of the exploratory regression models (see Section 

4.2). The stratified sample showed a positive effect in these variables by alleviating the 

separation problems due to repeated values.  

 

Table 5-34: Driver Crash Involvements in High-speed Multilane Roads in the Stratified Sample 

Driver-vehicle section Frequency Percent 
Driver 1 single vehicle 10587 8.18% 

Driver 1 multiple vehicle 55591 42.96% 
Driver 2 multiple vehicle 63235 48.86% 

Total 129413 100.00% 
 

 

Table 5-35: Goodness of fit for the Models using the Complete Records Driver 1 Section Dataset 

GOF Parameter OVERALL INTERS SIGNAL SEGMENT 
PURE 
SEG UNSIG 

Number of Variables 28 24 16 25 19 20 
Degrees of freedom 52 41 31 46 35 38 
Sample size 120442 70167 41779 71671 43283 28388 
Response severe injury 
ratio 6.41% 6.23% 5.53% 7.21% 7.18% 7.25% 
AIC 48211.51 28534.75 15861.77 30457.82 17747.43 12652.1 
Hosmer-Lemeshow  
p-value 0.2124 0.2355 0.241 0.7759 0.2078 0.1405 
c value (area under ROC 
curve) 0.789 0.764 0.759 0.803 0.824 0.771 
Percent Concordant 78.5 75.9 75.3 79.9 82.1 76.7 
Adjusted R-squared 0.1953 0.2355 0.1384 0.2229 0.2544 0.1835 
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Based on this analysis, it was decided to compare the road entity regression models using 

the two datasets to determine the best course of action for the final stage of this investigation. 

The composition of the database based on a sample of driver 1 and driver 2 sections is shown in 

Table 5-34, page 175, applicable to the six road entity models using driver section 1 using the 

complete records dataset. Table 5-35, page 175, shows the goodness of fit performance of these 

models. Although the goodness of fit measures for the first models was deemed acceptable, there 

was a comparison with models using the random sample of multiple vehicle driver involvements 

to assess not only the statistical model performance, but the coefficient interpretations, as 

suggested by Saccommano et al. (1994).  

To make a comparison, models for the road entities using the stratified sample of driver 

involvements from sections 1 and 2 were developed. The goodness of fit for these models was 

also acceptable (see Table 5-36, page 177). This database was slightly reduced to 129,193 

records for the regression analysis model due to invalid or missing data, including discarding 

crashes on road sections with very large medians (<150 ft), which did not change results 

significantly (not more than 3% of any odds ratio), but improved the median size coefficient. 

These few cases with very large median sizes might have been one-way roads or special cases 

which were not the main interest of this investigation. The Hosmer-Lemeshow p-values were 

improved, higher p-value is better in this calibration test. The coefficients values did not change 

drastically, but these models now take into account the diversity of driver involvements in 

multiple vehicle crashes to guard the efficiency of these models against certain biases, such as at-

fault drivers, shown in previous sections. 
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Table 5-36: Goodness of fit for the Models using the Stratified Driver 1 and Driver 2 Records Dataset 

GOF Parameter OVERALL INTERS SIGNAL SEGMENT 
PURE 
SEG UNSIG 

Number of Variables 33 26 20 27 24 17 
Degrees of freedom 67 56 43 60 48 48 
Sample size 129193 73547 43944 77623 48020 29603 
Response severe injury 
ratio 6.10% 6.01% 5.38% 6.75% 6.64% 6.94% 
AIC 50600.81 29451.99 16614.84 31836.67 18897.62 12868.79 
Hosmer-Lemeshow 
p-value 0.2493 0.5760 0.2507 0.8468 0.8790 0.1886 
c value (area under ROC 
curve) 0.768 0.745 0.736 0.786 0.804 0.757 
Percent Concordant 76.2 73.9 72.8 78.1 79.9 75.2 
Adjusted R-squared 0.1801 0.1482 0.1236 0.2109 0.2388 0.1774 

 

 

After evaluating and comparing these two sets of models, major differences were found. 

These results from these preliminary models were encouraging and a decision was made to 

proceed with final model development using the stratified sample. Some of the key advantages 

found are summarized next. First, the year to year statistical dependence of the driver injury 

severity was significantly reduced, which improves the validity of the analysis. Secondly, the 

ratio of severe injuries from the data using the stratified sample more closely resembles the total 

involvements on high-speed multilane arterials (see Table 5-37). The higher severe involvements 

response ratios are expected in the models because incomplete records were removed, which are 

likely minor crashes with no or lesser injuries. 

 

Table 5-37: Severe Injury to Driver Involvement Ratios for Complete Driver 1 and Driver 2 Records  

Road entity group Non-severe Severe Total Severe ratio 
All involvements 275143 15847 290990 5.45% 
All intersections 155727 9205 164932 5.58% 
Signalized 95274 5065 100339 5.05% 
Segment + Unsignalized 161781 10141 171922 5.90% 
Pure Segment 101328 6001 107329 5.59% 
Unsignalized 60453 4140 64593 6.41% 
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A third key advantage was that the random sample model generally had higher AIC 

values due to the increased heterogeneity of the data. However, this is usually a desired property 

on systematic crash analysis and statistical analysis in general. Minor loss of explanatory power 

(as measured by the adjusted R-squared value) was necessary to achieve more accuracy. There is 

an improved calibration of the models using the sampled multiple vehicle involvement data. 

Because the more homogeneous data do not completely reflect the variations in driver injury 

severity in multiple vehicle crashes, the statistical results might be misleading. Even tough the 

models suffer from a reduction in explanatory power, additional precision outweigh this loss. 

A fourth advantage was the numerical stability of the random sample models was vastly 

improved compared to the earlier models. A set of covariates that more accurately represented 

the changes in driver injury severity was obtained. The coefficient significance showed a small 

improvement in the random sample models. Although a more heterogeneous dataset was used, 

the standard errors remained in the same order of magnitude. 

Another advantage during model building was that the positive impact of interactions was 

noticed in the random sample models. Some important interactions in the driver 1 and 2 sections 

models did not significantly improve the model (AIC<10) and were eliminated. In the random 

sample models, important interactions were significant in the models, without adversely 

affecting significant main effects. During model building using the driver section data, 

interactions would cause dropping important main effects.  

Finally, the variables found significant in the random sample models were more useful 

when compared to those in the earlier models. One of the reasons was the superior numerical 

stability of the random sample dataset. Important variables such as shoulder width and lane 

width were tested in both model sets; however, these were significant only in models using a 
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sample of multiple vehicle involvements. Another important contribution was the addition of 

some roadway-related variables in the final stage of analysis, which is discussed in Section 5.4.1.  

The evidence just presented and the variables that were found significant show that a 

random sample of multiple vehicle crashes from sections 1 and 2 plus the single vehicle crashes 

is more representative of the total driver involvements than involvements from one section only. 

Therefore, a sample of multiple and single vehicle crashes, one involvement per crash was 

selected for final analysis. A model with this kind of sample is expected to have better reliability 

and scientific validity. 

 

5.4 Final Regression Analysis 

5.4.1 Additional Roadway Data from RCI 

Having selected an appropriate sample of driver involvements, the investigation focused 

on a preliminary analysis of additional roadway data made available before the final analysis. 

Initially, 15 road-related variables were available; these were reduced to 9 (see Table 5-39, page 

181). From the original 129,413 crashes there was a loss of 20,897 crashes that were located on 

the borders of two road sections, as defined by RCI. The design of the RCI database follows a 

Linear Referencing System that joins each link to the next one by a common milepost number. It 

was found convenient to eliminate these crashes to avoid errors in assigning sections due to the 

large sample available for the final analysis. Additional invalid or missing values further reduced 

the dataset to 107,449 records for the final analysis (see Table 5-38, page 180); these were 

sufficient for the analysis. The number of vehicles involved remained similar to the original data 
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contained in Table 5-1, page 131. In addition, the severity response ratios remained similar to 

those of the total involvements. There was no evidence of bias by eliminating these records. 

 

Table 5-38: Count of Vehicles (Driver) Crash Involvements for Stratified Driver 1 and Driver 2 Records  

Number of Vehicles Frequency Percent Cumulative Frequency Cumulative Percent 
1 9354 8.71 9354 8.71 
2 78230 72.81 87584 81.51 
3 15510 14.43 103094 95.95 
4 3485 3.24 106579 99.19 
5 699 0.65 107278 99.84 
6 119 0.11 107397 99.95 
7 38 0.04 107435 99.99 
8 8 0.01 107443 99.99 
9 2 < 0.01 107445 99.996 
10 2 < 0.01 107447 99.998 
11 1 < 0.01 107448 99.999 
12 1 < 0.01 107449 100.000 

 

 

The new variables included in this section were important to the development of the final 

models because they captured unobserved information in the previous models. A categorical data 

analysis was performed for the new variables (raw data n=150,286) (see Table 5-39, page 181). 

Variables with too many missing values or non-significant independence tests were excluded 

from further analysis. The variables nACMANCLS, nAUXLNTYP and nAUXLNUM had 

missing values that could be included in the model because these indicated that these features 

were not present. The variables in bold were included in the final analysis: LIGHTCDE (non-

high mast lighting pole density), LIGHTING (high mast lighting pole density), nACMANCLS 

(access management class), nAUXLNTYP (auxiliary lane type), nAUXLNUM (auxiliary lane 

number), nFRICTCSE (type of friction course), nPAVECOND (pavement condition), 

nSIDEWALK (sidewalk width) and, nURBSIZE (urban size). 
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Table 5-39: Test of Independence between Driver Injury Severity and the Variables Listed (n=150,286) 

Variable Missing DF PCHI chi-square p-value CONTGY CRAMV 
LIGHTCDE 0 6 78.77065 <0.0001 0.022888 0.022894 
LIGHTING 794 4 13.54608 0.008894 0.009519 0.009519 
ATTLOCCD 148698 5 6.086663 0.297877 0.061792 0.061911 
nACMANCLS 23907 80 711.7266 <0.0001 0.074834 0.075045 
nATTYPECD 148746 8 3.665354 0.885985 0.048728 0.048786 
nAUXLNTYP 57619 19 31.64173 0.034283 0.018475 0.018479 
nAUXLNUM 59511 9 16.2857 0.06115 0.013393 0.013394 
nFRICTCSE 5282 10 83.68075 <0.0001 0.024016 0.024023 
nPAVECOND 35 87 326.719 <0.0001 0.046581 0.046631 
nRDSIDTYP 149444 6 19.97368 0.002799 0.152224 0.154019 
nSIDEWALK 35 30 647.5108 <0.0001 0.065506 0.065647 
nSIGNALNC 143512 2 32.87606 <0.0001 0.069497 0.069665 
nSIGNALTY 74912 3 42.30534 <0.0001 0.023685 0.023691 
year 0 2 1.484014 0.476157 0.003142 0.003142 
nTURNMOVE 148333 4 10.48573 0.032994 0.073078 0.073274 
nURBSIZE 462 14 1011.463 <0.0001 0.081889 0.082164 

 

 

The variables related to road features included a categorical measure of street lighting 

(for high mast and non-high mast), the width of sidewalks, the type of auxiliary lane (if present) 

and the number of auxiliary lanes. Other variables related to the pavement included a condition 

index and the type of friction course included. This type of friction course is a feature 

independent from the measure of the friction (or skid resistance) number, but possibly related to 

friction performance in a way that could serve to improve the interpretative power of this model. 

Additional variables that further improved the information about land use were the urban size 

and access management class variables. The variables used in the final analysis are presented in 

detail in Appendix C. 
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5.4.1.1 Additional RCI Categorical Variable Setup 

Many variables in RCI were already categorical in nature, other were transformed from 

numerical to categorical. A description and reasoning behind these categorizations is presented 

in this section (categorical variables) and the next section (numerical variable transformations). 

The lighting conditions on high-speed multilane corridors are further described by a categorical 

variable in RCI that describes the density of lighting poles in a road section. Both LIGHTCDE 

(non-high mast lighting pole density) and LIGHTING (high mast lighting pole density) have 

three categories: yes, partial and none. The categories are defined in Table 5-40, which indicate 

the different values for each category in high mast and non-high mast lighting. High mast 

lighting has various advantages including increased coverage area and better uniformity to avoid 

driver glare effects. In addition, high masts are generally relocated out of the clear zone and with 

significantly lower amounts per mile, may also contribute to improved roadside safety 

performance. In Florida, high mast lighting is primarily limited to interchange locations far from 

developed areas and some older sites due to light trespassing issues. The implications of these 

design differences will be discussed later in this section. 

 

Table 5-40: Definitions of the Lighting Conditions of Roads from RCI 

Codes Non-high mast (LIGHTCDE) High mast (LIGHTING) 

N One or none light poles exists 
in the section 

One or none light poles exists 
in the section 

P 
Partial lighting exists Partial lighting exists 

(Rates of 4-24 lights poles per 
mile) 

(Rates of 4-9 light poles per 
mile) 

Y 
Full lighting exists Full lighting exists 

(Rates of 25 lights poles per 
mile or more) 

(Rates of 10 light poles per 
mile or more) 
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The Access Management Class variable (nACMANCLS) has a category 1 for limited 

access and classes 2 through 7 for the multilane non-limited access. Crashes on roads with 

category one (limited access) was not found in the final sample, as expected. The variable coding 

used in the final analysis follows the codes 2-7, as defined in Table 5-41, and one category for 

not applicable locations without an access classification by FDOT. Class codes 2-4 are defined 

by less dense land uses with intersection spacing of half a mile (lower density urban areas) and 

these categories were joined in the models, as the model building process dictated. In the end, the 

variable had five levels: class 2-4, class 5, 6, 7 and 9 (not applicable). The last level (9) was 

created for those road sections without access class codes. 

 

Table 5-41: Definitions of the Access Class Codes (from Rule 14-97) of Multilane Roads in Florida (Source: 
FDOT, 2007) 

Class Medians Median Openings (ft) Signal 
spacing (ft) Full  Directional 

1 Limited Access  N/A N/A N/A 

2 Restrictive w/ Service 
Roads 2,640 1,320 2,640 

3 Restrictive 2,640 1,320 2,640 
4 Non-Restrictive     2,640 
5 

  (>45 mph 
posted speed) Restrictive 

2,640 

660 

2,640 

5  
 (≤45 mph 

posted speed) 
1,320 1,320 

6 Non-Restrictive     1,320 
7 Both Median Types 660 330 1,320 

 

 

No changes in the urban size (nURBSIZE) variable coding had five levels based on the 

area population: rural, small urban, small urbanized, large urbanized and metropolitan. The 

rural/urban binary variable in the model was substituted by urban size to investigate its effects on 
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the model. The urban size did not perform as well as the binary rural/urban classification in the 

injury severity model. It could not be present simultaneously with the rural/urban variable due to 

collinearity issues (which were evident during model building), thus it was not entered into the 

final model.  

Two variables related to the road geometric design were expected to contribute to 

improved intersection models. The auxiliary lane type (nAUXLNTYP) indicates the type of 

auxiliary lane (if present) in the road section or intersection where the crash occurred. The main 

types of auxiliary lanes tested were left turn, right turn, bus, merging (outside), merging (inside) 

and parking lanes. In the final models (segment and unsignalized) only the merging (outside), 

merging (inside) and parking lanes were significant. This variable is complemented by the 

auxiliary lane number (nAUXLNUM), which depicts the number of auxiliary lanes present (if 

applicable) in the road section or intersection where the crash occurred. The combination of 

these two variables was tested in all the models, with limited success.  

Friction courses are applied to roads with heavy traffic volumes and high speed limits. 

The type of friction course has been evolving during the past decades and the field nFRICTCSE 

records eight types of friction courses, as defined by the FDOT. No crash data were found for the 

newer friction courses (FC-9.5 and 12.5). There are two general types of friction courses 

currently used by FDOT: dense graded and open graded. Their thickness is controlled by 

specification through the minimum and maximum spread rate. Generally friction course type 5 

(FC-5) is specified for multilane roadways with speed limits greater than 45 mph. FC-6 mixes 

(dense graded) are typically specified for roadways with posted speed limits less than or equal to 

45 mph, but were non-significant in the injury severity model essentially due to its low sample 

size. Older dense graded friction courses (FC-1 and FC-4) were found significant and are 
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discussed in more detail in subsequent sections. The dominant type of friction course for the 

roads in which crashes were reported was FC-2 (see Table 5-42). Preliminary analysis and model 

building led to five categories: FC-2 (base), FC-1, FC-4, FC-5 and none or other types. 

 

Table 5-42: Types of Friction Courses Related to Crash Involvements in High-speed Multilane Roads 

Type Friction Course Frequency Percent 
0 (none or null) 6767 6.30 

1 (FC 1) 6736 6.27 
2 (FC 2) 48354 45.00 
3 (FC 3) 14022 13.05 
4 (FC 4) 24618 22.91 
5 (FC 5) 2885 2.68 
6 (FC 6) 4067 3.79 

Total 107449 100.00 
 

 

An attempt was made to find correlations between friction course, skid resistance and 

severe injury to driver involvement ratios. Additional analysis of the interaction plot in Figure 

5-6, page 186, shows some important correlations that should be taken into account when 

interpreting the results of the injury severity analysis models. First, older friction courses (FC-2 

and FC-4) exhibited the highest severe injury ratio for skid resistance values of 35 and over. For 

road sections (or intersections) with FC-4, severe injuries account for 2.50% of total 

involvements for skid numbers over 44, compared to only 0.14% for all skid resistance values. 

For road sections (or intersections) with FC-2, severe injuries account for 3.18% of total 

involvements for skid numbers ranging from 35 to 44, but is also high (3.10%) for the rest of the 

skid resistance values. 
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Figure 5-6: Severe Injury Ratio to All Involvements by Skid Resistance and Friction Course 

 

Roads with friction courses FC-2 and FC-4 accounted for 46% and 23% of the total 

severe involvements. Similarly for the wet pavement crashes roads with FC-2 and FC-4 

accounted for 50% 20% of the severe injury involvements, as shown in Figure 5-7. There is a 

clear tendency of increased total and severe injury involvements at locations with older friction 

courses. Decreasing skid resistances of older friction courses (polishing effects) is an important 

concern for skid hazard prevention programs. However, roads under wet pavement hazards are 

considered when at least 25% of the crashes are related to wet pavement. If there is a systematic 

decrease in friction resistance on high-speed multilane corridors with older friction courses, it is 

not necessarily captured at the district level. The injury severity models only showed a trend by 

land use. 
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Figure 5-7: Severe Injury Ratio to Wet Pavement Involvements by Skid Resistance and Friction Course 

 

Another important concern is the frequency of severe injuries on roads with skid numbers 

1-25 (deemed unsafe) for both total and wet pavement crashes (see Table 5-43). Driver crash 

involvements on locations with low skid resistance accounted for 28.56% of the severe injuries 

(total crashes) and 30.87% of the severe injuries (wet pavement crashes). The nature of these 

crashes, especially for wet pavement, should be further investigated. 

 

Table 5-43: Percent of Driver Involvements for Total and Wet Pavement Crashes by Skid Resistance 

Skid 
Resistance 

Percent of driver involvements 
Total Wet Pavement 

Non-severe Severe Non-severe Severe 
1-25 34.35 28.65 37.72 30.87 

26-34 0.61 0.49 0.93 0.61 
35-44 57.07 61.05 55.16 60.53 
>44 7.97 9.81 6.19 7.99 

All numbers 100 100 100 100 
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5.4.1.2 Additional RCI Continuous Variable Transformations 

The pavement condition (PAVECOND) field in RCI denotes a visual interpretation of the 

conditions of the road surface (FDOT, 2007). Where different lanes have different pavement 

conditions, the worst condition is recorded for the section. The categorization of the pavement 

condition rating was used in the group of the continuous values with good results. The joining of 

the poor and very poor categories was due to the sample size. Poor pavement conditions can 

contribute to loss of control and formation of water film on the roadway, leading to possible 

hydroplaning conditions. These conditions are important to test against the conditional 

probability of driver injury severity. 

 

Table 5-44: Description of Pavement Condition Ratios (Source: FDOT, 2007) 

Code Description Definition 
1 Good Good: First class ride with only slight surface deterioration. 
2 Very good Very Good: Only new or nearly new pavement. 
3 Fair Fair: Rutting, map cracking and extensive patching. 

4 Poor or very poor 
Very Poor: Virtually impassable. 75% or more deteriorated. 

Poor: Large potholes and deep cracks exist. Discomfort at slow speeds. 
 

 

The sidewalk width and separation (SIDEWALK) is one characteristic that entails the 

pedestrian facilities for the location of the crash. It is also an indirect measure of the roadside 

clear zone, especially in urban areas. The values for the sidewalk width group were selected 

based in the standards in the Florida greenbook. The standard width of a sidewalk should be 5 ft 

when separated from the curb by a buffer strip, 4 ft may be considered when there are restrictions 

in the right of way. When sidewalks are adjacent to the curb, the minimum width is 6 ft. Unless 

there is high pedestrian traffic, wider sidewalks are not recommended to discourage higher 
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bicycle speeds and possible increased traffic conflicts with vehicles at intersection and 

driveways.  

A histogram analysis of the crash involvements proportions of non-severe injury 

involvements by sidewalk width group suggest a clustering of values 0, 5 and 6-8 ft. For the 

severe injury involvements the most common sidewalk widths were 3, 4 and 5 ft. Sidewalks less 

than 4 ft are considered non-compliant, older urban areas. Both 4 and 5 ft sidewalks are the 

minimums for urban areas with some buffer area between the road and the sidewalk. Sidewalks 

of 6 ft and more are those with no buffer or additional space needed due to high pedestrian 

volumes. Figure 5-8 below and Figure 5-9, page 190, clearly show a great difference between the 

portion of non-severe and severe injuries on locations with no sidewalks (<4 ft), which could be 

rural areas or suburban areas lacking pedestrian facilities. 
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Figure 5-8: Distribution of Non-severe Involvements by Sidewalk Widths 
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Figure 5-9: Distribution of Severe Involvements by Sidewalk Widths 
 

 

5.4.2 Road Entity Models  

The first six models of the final analysis performed well and had a distinctive information 

advantage over the previous models contained in Appendices E and F; Table 5-35 and Table 

5-36. These models have remarkably better information performance, when comparing to the 

previous models. Most of the non-significant coefficients are for the other categories of the 

variables used in the model, which is acceptable. The following subsections present the model 

details by driver-, vehicle- and road-related variables. A complete list of variables descriptions 

for the final analysis is shown in Appendix C. The detailed models with coefficients and standard 

errors are presented in Appendix D. 
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Table 5-45: Goodness of fit for the Models Using the Stratified Dataset with Additional RCI Data 

GOF Parameter OVERALL INTERS SIGNAL SEGMENT 
PURE 
SEG UNSIG 

Number of Variables 38 24 20 32 22 16 
Degrees of freedom 68 50 44 60 42 33 
Marginally significant 
coefficients 5 3 1 10 1 3 
Non-significant coefficients 7 5 7 7 10 3 
Sample size 107449 55908 30832 69887 44818 25062 
Response severe/non-
severe ratio 6.09% 5.95% 5.23% 6.74% 6.68% 6.84% 
AIC 41752.15 22153.74 11358.46 28556.32 17757.94 10792 
Hosmer-Lemeshow 
p-value 0.7626 0.2168 0.6931 0.9695 0.5144 0.116 
c value (area under ROC 
curve) 0.774 0.749 0.742 0.788 0.802 0.757 
Percent Concordant 76.8 74.3 73.5 78.3 79.6 75.2 
Adjusted R-squared 0.1883 0.1525 0.1314 0.213 0.2363 0.1749 

 

 

The road entity models resulted in a rich model with driver, vehicle-collision and 

roadway-environment-related variables. The set of variables with the corresponding odds ratios 

are presented and discussed. The discussion is divided in these three major categories to allow 

for comparison of the six road entity models in an effective manner. Then, twenty models by 

crash type and road entities are discussed to complete the driver injury severity modeling 

presented in Section 3.6. Finally, additional discussion about the adequacy of the models is 

presented. 

5.4.2.1 Driver-related Variables for Road Entity Models 

The driver-related variables tested in the final analysis models are presented with their 

respective coefficient odds ratios in Table 5-46, page 192. Most of the important driver-related 

variables tested were found significant for any of the models. The odds ratios are used in this 

discussion as the best way to interpret the results of the logistic regression injury severity 
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models, as discussed in Section 3.5.2. The values of the odds ratios represent a ratio of 

probabilities (holding all other factors constant) between a factor value and its base value. This 

ratio of probabilities refers to the chance of driver severe injury given a crash involvement 

occurs. The values presented in this section generally agreed with the empirical findings in past 

studies discussed in Chapter 2. Some of the driver-related variables have a high relative 

importance in the injury severity model, which will be discussed in a later section. 

 

Table 5-46: Driver-related Variables Odds Ratios for the Final Analysis Models (Sample of Driver 
Involvements) 

Variable Level Overall Inters Signal Segment Pure 
Segment 

Non- 
signal 

Driver Age Group                      
(vs. 25-64 years)               

80-98 years 5 1.621 1.805 1.713 1.507 1.155† 1.922 
65-79 years 4 1.422 1.542 1.426 1.410 1.253 1.665 
20-24 years 3 0.779 0.755 0.695 0.800 0.803 0.823 
15-19 years 2 0.767 0.793 0.789 0.752 0.750 0.799 
Ejected (Yes/Partial vs. No)   4.270 4.209 4.281 4.381 4.533 4.170 
Gender (Female vs. Male)   1.217 1.435 1.447 1.209 1.457 1.429 
Seat Belt Used (vs. no) 1 0.303 0.344 0.348 0.302 0.322 0.346 
Gender*Seat Belt Used 1 1.245     1.254     

Speeding (Unknown vs. not) 2 0.863† 0.610 0.724 0.825* 0.866† 0.607 

Speeding (Yes vs. Not) 1 0.409 0.530 0.527 0.368 0.402 0.573 
Contributing Cause                         
(vs. no improper action)               

Other Contributing Cause 4 1.605 1.296   1.891 2.008 1.542 
Aggressive Driving 3 1.748 1.432*   2.227 2.302 1.987 
Alcohol/Drug involvement 2 1.593 1.622   1.786 1.645 1.858 
At Fault driver (vs. not)   0.538 0.531 0.589 0.517 0.530 0.510 
Red light running (vs. not)     1.333 1.439       
FL Resident (vs. not)   1.175 1.286 1.587       
Physical Defects (vs. not)   1.535 1.511 1.741 1.497 1.531   
Notes: * Effect is marginally significant (p<0.20); † Effect is not significant (p≥0.20)  

 



193 

Driver age has been proven to be a very important effect on the crash frequency and 

injury severity, as discussed in Chapter 2. The values of the odds ratios are consistent for all of 

the models presented here and similar to those on the exploratory analysis models. Very old 

drivers (ages 80 and over) have more than 150% probability of a severe crash when compared to 

middle-age (25-64 years) drivers in all the models. It is noteworthy that this coefficient (and odds 

ratio) was non-significant in the pure segment model and highest for the unsignalized 

intersection model. Very old drivers have more acute vision and gap judgment limitations which 

hamper their ability to cross intersections safely. This applies to both signalized and unsignalized 

intersections. Poor traffic signal coordination and severe unbalances towards major road traffic 

and limit gap availability of the unsignalized intersections.  

Older drivers (65-79 years) follow the same trend as their older counterparts, but with 

slightly lesser odds ratios of severe injury, due to their more favorable physiological 

characteristics. The models agree with previous research that showed a correlation between 

intersections and older driver crashes. Younger drivers have odds ratios less than one, indicating 

a reduced probability (about 77% in the overall model) of severe injury when compared to 

middle age drivers, all else held constant.  

Some of the studies discussed in Chapter 2 focused on the different injury severity 

experience of males and female drivers. The differences are mainly due to increased 

physiological resistance of male drivers to injury. Female drivers are 121% more likely to sustain 

severe injury as a result of crashes on high-speed multilane roads. This negative effect is more 

acute at intersections, with a 143% chance of severe injury when compared to males, all else held 

constant. The odds ratios do not vary consistently among the models, for example the segment 

and overall models have lower odds ratios than any of the other road entities that make up these 
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combined models. The interaction effect of gender and safety equipment (seat belt use) shows 

the effect of females using seat belts compared to males not using seat belts. Even with this 

disadvantage, females showed a 125% chance of severe injuries compared to male drivers. This 

interaction was only present in the overall and segment models and explains the lower odds ratio 

for the gender main effects variable discussed previously. However, driver ejection did not 

present an interaction with gender or age. The ejected variable odds ratio shows that drivers are 

ejected (partially or totally) from their vehicle are 427% more likely to sustain severe injury than 

those who are not. These models show a better picture of the magnitude and related factors to 

female driver injury severity.  

Behavioral differences by gender may have some effect on injury severity; however, 

those could not be directly correlated (as interactions) in the models presented here. Seat belt 

usage is the single most important positive effect on injury severity, as indicated by its odds 

ratio. Drivers using seat belts are only 30% likely to sustain severe injury when compared to 

those who do not, holding all other factors constant. Driver ejection, although a post-crash event, 

is important for these models to complement the seat belt use effect. The issue of seat belt use 

over reporting was discussed earlier in this chapter and may affect the validity of the magnitude 

of the positive effect of seat belt usage. Driver behavior is the most important contributor to their 

injury severity outcomes in crashes on high-speed multilane roads. Engineering countermeasures 

should focus on improving the decision capabilities and focus on the road of drivers in these 

busy corridors. 

Drivers at fault were found to have a 53% likelihood to sustain severe injury when 

compared to those not at fault. This relation was almost constant, including the signalized 

intersections, where the red light running drivers are 143% more likely to have severe injuries 
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than non red light running drivers. Red light running crashes are generally the most severe 

crashes for signalized intersections and have become a very important target of engineering and 

law enforcement countermeasures in Florida. Speeding drivers are 40% as likely as others to 

sustain sever injury. This variable has a degree of indeterminacy due to the unknown values for 

24% of the involvements in the stratified sample and the estimation of speed by the police 

officer. However, due to its importance, it was tested and the unknown level was non-significant 

in the overall model, suggesting that this trend will be true if all estimated speeds were known. 

The estimation effect is less likely to affect the speeding variable due to the training and 

experience of officers in judging speeding driver behavior. The contributing cause factor showed 

the expected higher chance of aggressive drivers (159%) to sustain severe injury as a result of 

crashes in high-speed multilane roads. This effect is more pronounced on unsignalized 

intersections, were poor gap availability may lead to aggressive driving compounded by 

aggressive drivers on the major road that do not keep a safe distance for reaction to unforeseen 

perpendicular crossing events. 

Some relatively less important driver variables were not dropped from the model when 

additional road variables were introduced. This improved the information available on the 

models. Drivers who are Florida residents are 117% as likely as the non-residents to sustain 

severe injury in crashes on high-speed multilane arterials, holding all other factors constant. This 

is an important result out of concern for the effects of the millions of visitors that drive in Florida 

each year on the safety performance of the high-speed multilane corridors. Only 4.61% of the 

total drivers involvements analyzed were classified as non-resident. It was observed that non-

resident drivers were involved in 4.34% of the severe injuries (see Table 5-47, page 196). Only 

1.34% of the severe injuries involved a non-resident driver at-fault. No major difference was 
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evident between non-resident at-fault drivers (44.5%) and the overall at-fault rate in severe 

injuries (40.6%, see Table 5-9). Past research by Abdel-Aty et al. (1999) showed that non-

resident driver crash involvements by age followed a similar trend than for the Florida resident 

drivers. The results of the injury severity models demonstrate that non-resident drivers are not a 

major safety concern for high-speed multilane arterials in Florida. Drivers suffering from 

physical conditions (defects) such as fatigue and eyesight problems are 153% as likely to sustain 

severe injury as healthy drivers, holding all other factors constant. The signalized intersections 

represent the biggest challenge to these drivers, were the odds ratio for the physical defect 

variable increased to 1.74, suggesting that drivers in bad physical condition fare worse in crashes 

at or near intersections. 

 

Table 5-47: Driver Residence and At Fault in Severe Crash Involvements  

At Fault 
Driver Residence_Code 

Total Percent Frequency Non-
Florida Florida (Percent) 

No 200 4542 
4742 71.22% (3.00) (68.22) 

Yes 89 1827 
1916 28.78% (1.34) (27.44) 

Total 289 6369 6658 100.00%  Percent 4.34% 95.66% 
 

 

5.4.2.2 Vehicle- and Collision-related Variables for Road Entity Models 

The vehicle- and collision-related variables are important in contributing to the injury 

severity characteristics found at the high-speed multilane roads. The variables found significant 

in all models are harmful event (collision type) and type of vehicle. The interpretations of these 

variables complemented the vehicle maneuver and private vehicle use variables in some models. 
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Important types of crashes, such as off road, work area-related, and multivehicle, were 

significant in the overall model; the latter proves to be most appropriate in terms of coefficient 

significance (see Table 5-48). The odds ratio values agreed with previous empirical results.   

 

Table 5-48: Vehicle- and Collision-related Variables Odds Ratios for the Final Analysis Models 

Variable Level Overall Inters Signal Segment Pure 
Segment 

Non- 
signal 

Harmful Event Group                      
(vs. Rear-End)               

Other 7 1.097 1.091* 0.982† 1.132 1.149 1.101† 
Fixed Object 6 1.810 2.174 2.578 1.840 1.879 1.636 
Sideswipe 5 0.779 0.724 0.540 0.836* 0.904† 0.810† 
Left Turn 4 2.242 2.228 2.304 2.026 2.306 1.806 
Angle 3 1.784 1.812 1.649 1.790 1.818 1.754 
Head-On 2 2.875 2.263 2.188 3.211 4.054 2.068 
Vehicle Maneuver                     
(vs. Straight Ahead)               

Other  4     1.100†       
Left Turn 3     1.258       
Slowing / Stopping 2     0.760       
Vehicle Type (vs. Automobile)               
Other 5 0.756 0.654 0.597* 0.798* 0.824† 0.708† 
Bicycle and motorcycle 4 1.050† 1.273 1.186† 0.965† 0.926† 1.352* 
Trucks and buses 3 0.357 0.325 0.366 0.362 0.371 0.273 
Van, Light Truck, Pick up 2 0.820 0.780 0.811 0.830 0.872 0.742 
Point impact (driver side vs. not)   1.091† 1.187* 1.524 1.094†   1.595 
Point impact*Speeding 2 1.240* 1.457   1.093†     
Point impact*Speeding 1 1.412 1.507   .      
Off Roadway (vs. not)   0.613     0.739 0.716   
Off Roadway*Speeding 2 0.783*     0.896† 0.944†   
Off Roadway*Speeding 1 1.289     1.517 1.388   
Off Roadway*Multivehicle 1 2.033           
Work Area (Entered vs. none) 3 0.826*     0.829*     
Work Area (Nearby vs. none) 2 0.750     0.742     
Private vehicle use (vs. not)         1.565     
Private veh*Avg Truck Factor         0.975     
Multivehicle (vs. single vehicle) 1 0.469           
Intersection*Multivehicle 1 1.476           
Notes: * Effect is marginally significant (p<0.20); † Effect is not significant (p≥0.20)   
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The odds ratios just shown in Table 5-48, page 197, indicate that only sideswipe 

collisions are less likely (22.1% less) to result in driver severe injury when compared to rear-end 

crashes. The odds ratios for collision types significantly varied among the road entity models, 

confirming the reasoning for the proposed modeling scheme by crash types presented later in this 

chapter. Drivers’ involved in head-on crashes were 287% as likely as those involved in rear-end 

crashes to sustain severe injury, the highest odds ratio among collision types. Head-on crash 

involvements are most severe in pure segments (cross-over of the median) with a 405% chance 

of severe injury when compared to rear-end involvements. Even when the operating speeds are 

lower than in limited access facilities, the severity of this type of involvements should be taken 

into account when designing and improving these arterial corridors. The left turn crashes are of 

great concern because they are more frequent (6% of the total) than head-on crashes on high-

speed multilane roads (see Figure 5-10). Drivers involved in left turn crashes are 224% as likely 

to sustain severe injury as those in rear-end crashes. On the other hand, drivers involved in angle 

crashes are 178% as likely to sustain severe injury as those involved in rear-end crashes. This 

figure is alarming because angle crashes are more than double as frequent as the left turn crashes. 
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Figure 5-10: Collision Types on High-speed Multilane Roads 

 



199 

Another group of crashes that are important in high-speed multilane arterials are those 

involving fixed objects. Drivers involved in these types of collision are 181% as likely to sustain 

severe injury as those in rear-end collisions. Although this group is not a major component of the 

total number of crashes (see Figure 5-10), it is directly affected by the roadside design 

characteristics. The lack of uniformity in access management and limitations of right of way in 

urban areas constitute major design challenge for new and reconstructed arterial corridors. The 

level of disaggregate analysis in the injury severity models allows to pinpoint major factors that 

affect the severity performance in high-speed multilane roads. The models by crash types will 

uncover additional contrasts discussed in the latter part of this chapter. 

The vehicle maneuver variable for left turn movements (vs. straight ahead) has a chance 

of 125% to sustain severe injury compared with the movement correlated with rear-end crashes. 

The differences between the left turn (harmful event) and left turn vehicle maneuver collision 

odds ratios suggests that in general drivers making a left turn are less likely to sustain severe 

injury than those hitting the left turning vehicle in signalized intersections. The left turn phasing 

in signalized intersections may affect the severity outcomes for the left turn crashes. It seems that 

he permissive left turn phasing is an underlying factor, since this variable was only significant 

for the signalized intersection model. Previous research has shown that the left turn phasing in 

the major road is a contributing factor to reduced crash frequency along arterial corridors (Abdel-

Aty and Wang, 2006). In that particular study, the negative binomial crash frequency model 

accounted for the signalized intersection spatial correlation along the corridor. In another study, 

Wang and Abdel-Aty (2006) found that for rear-end crashes would increase when both left turn 

phases in the major road are protected in crash frequency models accounting for spatial 
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correlation of signalized intersections in arterial corridors. The safety offset of reducing the most 

severe crash involvements is an increase in certain crash types that are less severe.  

The type of vehicle is an important factor affecting the injury severity of drivers involved 

in crashes. The changing nature of the vehicular fleet and roadway design, especially roadside 

appurtenances such as guardrails and crash cushions, may affect the safety performance of the 

high-speed multilane corridors. Drivers of vans, light trucks (LTV’s) and pickups involved in 

crashes at high-speed multilane roads are 82% as likely as passenger car drivers to sustain severe 

injuries. The adverse effects of the LTV’s visibility obstruction on following passenger cars in 

rear-end and angle crashes resulting in fatal injuries and the differential impact energy effect on 

fatal angle collisions have been studied by Abdel-Aty and Abdelwahab (2003 and 2004). 

Drivers of heavy trucks are 35.7% as likely as passenger car drivers to sustain severe 

injury from a crash involvement. This heavy truck driver effect is more acute in unsignalized 

intersections (27.3% as likely as passenger car drivers to sustain severe injury). Duncan et al. 

(1998) found that impact speed differential and passenger car rear impact were contributing 

factors to increasing incapacitating injury and fatal injuries in car-truck two vehicle crashes on 

divided highways in North Carolina. Additional research is needed to determine the specific 

factors affecting car-truck crashes at unsignalized intersections. On the other hand, private 

vehicle use (almost certainly not heavy trucks) was found to increase the likelihood (compared to 

non-private vehicles) of severe injuries in segments, while the interaction with the average truck 

volume factor showed decreased likelihood with increased truck volumes. These additional 

factors and their possible relation to type of vehicle, land use and travel choice needs to be 

further investigated.  



201 

The bicyclists and motorcyclists’ injury severity coefficients are significant only in the 

intersection model. This point to a need of increased efforts to reduce traffic conflicts at 

intersections, reduce red light running and other situations were these vulnerable road users are 

at a disadvantage with the other vehicle types. Research on motorcycle and bicycle crash rates 

has been hampered by a lack of exposure data, prompting new data integration strategies in the 

Florida 2006 SHSP (FDOT, 2007). The increase in motorcycle fatal crashes as a proportion of all 

motor vehicle crashes in Florida and the high proportion of intersection crashes indicate the 

potential for safety problems on intersections in relation to these vulnerable drivers. 

The point of impact variable is significant only for the signalized intersections, which 

points out that drivers of vehicles hit on the driver’s side are 152.4% as likely as those of 

vehicles with impacts on other locations, all else held constant. These results contrast with the 

results of the injury severity analysis using data from all non-limited access roads in three 

counties in Central Florida (Abdel-Aty, 2003). In that study, the point of impact variable (driver 

side vs. non-driver side) was significant in both the road segments and signalized intersections 

models. The higher likelihood of severe injury for drivers of vehicles hit on their side agrees with 

the previous study. The interaction of point of impact and speeding helps explain this difference. 

Drivers speeding at or near intersections and hit by their side of the vehicle are 150.7% as likely 

as the other drivers of sustaining severe injury, all else held constant. If we compare the speeding 

coefficients found in that previous study with the speeding coefficient found in the models of the 

final analysis, it seems that the likelihood of increased injury severity is higher for high-speed 

multilane corridors. It can be theorized that driver injury severity in high-speed multilane roads 

are more affected by speeding behaviors and intersection locations than other types of roads (i.e. 
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two-lane roads). Additional research could test the validity of this claim and describe its 

implications. 

Off roadway crashes (part of lane departure crashes) have been identified by the SHSP as 

a serious safety hazard (FDOT, 2007). The majority of the lane departure crashes occur on 

limited access roads and two-lane roads. However, the significance of the fixed objects and off 

roadway coefficients indicates that these affect the safety performance (in regards to driver 

injury severity) of the high-speed multilane roads. The drivers in off roadway involvements are 

61.3% as likely to receive severe injury as the other drivers, all else held constant. This seems as 

good news in terms of high-speed multilane roads. Two interaction coefficients, of which one is 

only significant in the overall model, present a more complete picture of the off roadway crash 

involvements. Drivers speeding and involved in off roadway crashes are 128.9% as likely as 

other drivers to sustain severe injury, all else held constant. In addition, drivers involved in 

multivehicle off-roadway crashes are 203.3% as likely as other drivers to sustain severe injury, 

all else held constant. These off-road crash interactions emphasize the role of speeding as a 

safety hazard in high-speed multilane roads and points to a possible relation between driveway 

crashes (multivehicle and off road) and increased injury severity. The implications of these 

results are further discussed in Chapter 6. 

The work area variable significance in the overall models was not expected. This denotes 

the importance of exploring the safety effects of work zones in high-speed multilane roads. The 

effect on driver injury severity is positive (OR=0.75) for the crashes entering the work zone 

when compared to crashes outside work zones. Meanwhile, crashes inside the work area did not 

have a significant effect on driver injury severity. This result suggests that crashes inside work 

areas could be more severe than those in the transition area (taper). In the rural and urban areas 
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models, there are major differences with these results. A possible avenue of research is to 

investigate the relationships between speed limits, land use and work area crash frequency and 

severity. 

The single vehicle crashes tend to produce more severe injuries in high-speed multilane 

arterials. Drivers involved in multivehicle crashes are 46.9% as likely to sustain severe injury as 

the drivers involved in single vehicle crashes. Single vehicle crashes constitute less than 9% of 

the total crashes and are still shown as a significant factor contributing to injury severity. Multi-

vehicle involvements at (or near) intersections are 147% as likely to result in severe injury as the 

single vehicle involvements at or related to intersections. The multiple interactions of factors 

with intersections underscore the importance of these road entities in the analysis of the 

multilane arterial safety performance. 

5.4.2.3 Roadway- and Environment-related Variables for Road Entity Models 

Many of the variables discussed previously have indirectly affected the roadway design 

in high-speed multilane roads. However, the roadway variables are the most important for a 

study seeking to find contributing factors that describe the safety performance (in terms of driver 

injury severity) of multilane road design characteristics. These are expected to allow researchers 

find ways to improve the design, maintenance, operation and safety performance of the arterial 

corridors that are under increased pressure to sustain the mobility needs of a growing population. 

The group variables found significant in at least one of the road entities are shown in Table 5-49, 

page 204. A large number of roadway-related variables was found significant even with the 

presence of a complete set of driver vehicle- and crash-related variables. This is one of the main 

achievements of a painstaking data preparation and model development effort. 
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 Table 5-49: Roadway- and Environment-related Variables Odds Ratios for the Final Analysis Models 

Variable Level Overall Inters Signal Segment Pure 
Segment 

Non- 
signal 

Speed limit (40-45 vs. other) 1 0.676 0.657 0.709 0.657 0.677 0.622 
adt per Lane (thousands)   0.972     0.960 0.948 0.972 
Avg Truck Factor (percent)   1.011     1.034 1.012   
High Mast (full vs. none) Y 1.331     1.403     
High Mast (partial vs. none) P 3.506     3.710     
Traffic Signal (vs. other) 3 1.128     1.236     
Stop/Flashing (vs. other) 2 0.997†     1.319*     
Non applicable (vs. class 2,3,4) 9 1.030† 1.009† 1.040†       
Access class 7 (vs. class 2,3,4) 7 0.781 0.677 0.622       
Access class 6 (vs. class 2,3,4) 6 0.833 0.756 0.649       
Access class 5 (vs. class 2,3,4) 5 0.879 0.847 0.836       
Urban area (vs. Rural)   0.879 0.744 0.808 0.816 0.916† 0.649 
Curb Shoulder (vs. Paved) 3 1.089 1.114 1.162       
Unpaved Shoulder (vs. Paved) 2 0.967† 0.973† 0.954†       
Lane width                                        
(vs.  11 ft ≤ width ≤ 12 ft)               

Lane width <10 ft 4 0.827 0.766 0.812 0.843     
10 ft ≤ lane width < 11 ft 3 0.815 0.802 0.677 0.874*     
Lane width > 12 ft 2 0.810 0.850 0.801 0.818     
Roadway Curve (vs. non curve)   1.306     1.391 1.339 1.510 
Sidewalk width ≥ 6 ft (vs. <4 ft) 3 0.791 0.723 0.665 0.801 0.831 0.762 
4 ft ≤ Sidewalk < 6 ft (vs. <4 ft) 2 0.851 0.774 0.696 0.890 0.910* 0.833 
Full Non-High Mast (vs. none)  Y 1.129 1.162   1.121* 1.053†   
Partial Non-High Mast (vs.none)  P 0.821 0.873   0.837 0.770   
Type Friction Course (vs. FC-2)               
FC-3, FC-6 or not applicable 9 0.975† 0.995† 0.916† 0.992† 0.948†   
Friction Course type 5 (FC-5) 5 0.831 0.726 0.539 0.903† 0.935†   
Friction Course type 4 (FC-4) 4 0.918 0.976† 0.988† 0.929* 0.888   
Friction Course type 1 (FC-1) 1 0.736 0.737 0.687 0.754 0.723   
Intersection   0.831*           
Intersection*Urban area   0.862           
Skid Res. (1≤FN<35 vs. FN≥35)   1.198 1.143   1.256 1.305   
Urban area*Skid Resistance   0.919* 0.969†   0.868* 0.825   
3 or more Aux Lanes (vs. none) 3       1.075†   1.190* 
2 Auxiliary Lanes (vs. none) 2       0.882   0.860* 
1 Auxiliary Lanes (vs. none) 1       1.054*   1.136 
Weekend (vs. Weekday)   0.906           
Notes: * Effect is marginally significant (p<0.20); † Effect is not significant (p≥0.20)   
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The key advantages of the overall model to analyze the driver injury severity resulting 

from crash involvements on high-speed multilane arterial corridors are realized in the roadway-

related variables. The implications of these results are discussed further in Chapter 6. One of the 

most important road design parameters is the speed. Speed limits generally reflect a decrease of 5 

to 10 mph below the speed limit. In regards to driver injury severity, only speed limits 40 to 45 

miles per hour resulted in significant coefficients. Drivers involved in crashes on multilane roads 

with speed limits 40 to 45 miles per hour are 67.6% as likely to sustain severe injury as drivers in 

non-limited access roads with other speed limits. This applies to the drivers on minor roads 

(lower speed limits) as well as those on higher speed roads, up to 70 mph. Recall that a 70 mph 

speed limit could be recorded when the crash is related to a ramp intersection with a limited 

access road such as the Florida Turnpike. These represent a very small minority of the cases. 

Speed differentials are correlated to increased crash severity (Wilmot and Khanal, 1999); thus 

the reduced severity on the most common speed limits is expected when compared to the roads 

with smaller or higher speed limits. It also points to a possible increase of severity on multilane 

roads with speed limits of 50 mph and over. This should be the subject of further severe crash 

frequency research. The larger odds ratio for the signalized intersection suggests that signalized 

intersections are more sensitive to the major road speed limit than other road entities. 

The traffic volume per lane is one of the most important contributing factors to driver 

injury severity. For each unit increase of adt per lane, there is a 97% conditional probability 

severe injury compared to the previous unit of adt per lane and holding all other factors constant. 

Each unit of adt per lane consists of 1,000 vehicles, as explained earlier in this chapter. As traffic 

volume increases, severe injuries tend to decrease. This relationship between congestion and 

safety has been proven in previous research (Shefer and Rietveld, 1997). Another important 
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result is that the joined intersection (combined signalized and unsignalized) did not improve with 

a negligible decrease of 2 in the AIC value after forcing the adt per lane variable into the model. 

Since adt per lane was significant in the unsignalized intersection model, it was also tested in the 

signalized intersection model. The signalized intersection model worsen (AIC increased by 10) 

when the variable adt per lane was forced into the model after the variable did not enter the 

model by the stepwise method. The coefficient of the variable was highly insignificant (p-

value=0.4064). Recent research by Wang et al. (2006) and Abdel-Aty and Wang (2006) showed 

that the natural log of the adt per Lane was found significant in the crash frequency models for 

signalized intersections in arterial corridors. The change in functional form of the adt per lane 

variable was tested with similar results. Additional tests and discussion about this situation are 

presented at the end of this chapter. 

The average truck factor is the proportion of heavy truck volume on roads. As the truck 

traffic increases, there is an increase, albeit smaller than for other factors, in the severe injuries 

on high-speed multilane roads. There is a tendency of higher severe injuries in heavy business 

and industrial areas. Thus, this effect is expected to be correlated to the land use. Special 

consideration should be given to the provisions for deceleration, acceleration, and storage lanes 

in commercial or industrial areas with significant truck/bus traffic. 

There are two variables regarding roadway lighting: LIGHTING refers to the density of 

high mast luminaries per mile, LIGHCDE refers to the density of non-high mast luminaries per 

mile. There is a strong tendency in Florida to place high mast lighting mainly in areas that 

require a large spread of illumination, such as interchanges and limited access facilities exits. 

The rest of the locations use conventional light poles, especially in urban areas. The results of the 

models indicate that the high mast is significant only in the combined segment models, which 
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includes unsignalized intersections. Many isolated rural areas with interchanges are more likely 

to have high mast lighting, but not enough to have a significant proportion of all of the 

unsignalized intersections. In the case of the non-high mast lighting, the variables were only 

significant in the intersections, segment and pure segment. The non-significant results in the 

signalized intersections model are suspected to be related to the differences in land use. 

Unsignalized intersections were expected to have non-significant effects because of the tendency 

to have lower lighting levels in the rural areas. When comparing the odds ratios of the high mast 

and non-high mast lighting, there is an increased benefit for the partial non-high mast lighting 

(odds ratio 0.821 for overall). The negative effects (odds ratios greater than one) of the non-high 

mast lighting has to be interpreted taking into account the types of locations were these 

luminaries are located. Rural locations have a clear tendency to higher injury severity. However, 

the very high odds ratios (3.506) for the partial lighting may require special attention as a 

possible group of hazardous locations in high-speed multilane roads. There is a clear advantage 

to locations with partial non-high mast lighting. The high mast lighting negative effects are likely 

caused by the rural intersections locations were high masts tends to be placed. However, there is 

a large difference between the partial and full lighting density, which suggest the large benefits 

of additional lighting in these areas. Again the overall model proved adequate with significant 

contributing factors that are consistent with the values in the individual models in which these 

were also found significant.  

Access Management classes in a multilane arterial corridor are a measure of the type of 

median and proximity of median openings, access points and intersections. Classes 2 to 4 are 

characterized by a signalized intersections separated by ½ mile or more, while for classes 5 to 7 

the separation is reduced to ¼ mile for roads with speed limits 50 mph or greater. Compared to 
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classes 2 to 4 with longer separation distances, classes 5 to 7 exhibited odds ratios less than one. 

Class type 7 seems to exhibit the most benefit (odds ratio=0.781), followed by class 6 (odds 

ratio=0.833) and class 5 (odds ratio=0.879). It is important to reiterate that the logistic regression 

represents a conditional probability given a crash occurs, which does not necessarily traduces 

into increased severe crash frequency. The lower speed limits and higher traffic congestion are 

expected to lower the risk of severe crashes in these areas. The type of median opening becomes 

an important effect on the injury severity when the signal spacing is reduced to ¼ of a mile. The 

distance measurement of median (unsignalized intersection) separation and intersection spacing 

are taken from the center of the intersections. The negative effects of closely spaced intersections 

has been suggested by previous research, but the effect of median opening types has seen limited 

study in part due to the difficulties raised by the experimental design of before after-studies of 

major corridor improvements. The directional median openings restrict crossing maneuvers that 

increase the likelihood of angle crashes, which tend to be severe.  

When the overall model was built using urban area crashes only, the odds ratio of class 5 

remained practically the same, while the odds ratio of class 7 raised by 14.61%. In urban areas 

only, the odds ratio of classes 5 to 7 are 0.873, 0.795 and 0.667, respectively. This demonstrates 

the benefits of the median access restrictions and longer spacing between access points and 

intersections. Since each class has two access point separations options by speed limit it is 

important to determine whether other factors affect the safety performance of road sections with 

closely spaced intersections. Further research is needed in this area. 

The traffic control variable shows how severe injuries outcomes may be affected by the 

type of traffic control of intersections. There is a trend of lower severe injury risk at signalized 

intersections, but this coefficient was not significant mainly due to the issues discussed 
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previously with the signalized intersections in rural and urban areas. However, it is clear that the 

stop controlled intersections represent a higher risk (odds ratio=1.128) when compared to other 

intersections and road segments.  

The land use is the single most important factor that has indirectly affected these models. 

The close agreement of the access class variable odds ratios and the rural urban variable in Table 

5-49, page 204, are yet another proof of that phenomenon. Access classes 5 to 7 are expected in 

urban areas. Clearly, the urban area exhibits lower conditional risk of severe injury, holding all 

else constant (odds ratio=0.879). The non-significance of the coefficient in the pure segment 

model suggests that the major differences between rural and urban areas in terms of injury 

severity are in regards to their intersections and access points.  

The type of shoulder variable showed the effect of this important component of the road 

in the context to its correlation with land use. The base variable, paved shoulder exists in both 

rural and urban (or suburban) land uses. The unpaved shoulders are usually found in rural areas, 

but it seems that not with enough frequencies to make it a significant factor in the driver injury 

severity. However, the curb shoulder type suggests higher severity in crashes (odds ratio=1.089) 

than the paved shoulder. Sections with curbs usually have narrow shoulders and curbs 

themselves may become a barrier at high speeds. This is likely to affect the risk of severe injury 

in crashes, given a crash occurs. This effect was significant for the signalized intersections which 

lead to possible relationships between the degree of development, traffic conflicts and severity of 

crashes, especially at urban signalized intersections. 

The lane width coefficients were compared to a base value of lanes between 11 and 12 ft 

wide, which are the most common used lane widths. The odds ratios of lanes less than 10 ft 

(0.810) and between 10 and less than 11 ft wide (0.815) are practically equal. Meanwhile, for 
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lanes more than 12 ft width (odds ratio=0.827) there is a perceived benefit of a wider lane on 

multilane arterials. The positive effects of increased lane widths on crash frequencies on an 

arterial corridor have been discussed previously in a study by Abdel-Aty and Radwan (2000). 

Another study by Karlaftis and Golias (2002) pointed out the positive effects of lane widths on 

crash rates of multilane roads. 
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Figure 5-11: Lane Width and Severe Injury Proportions on High-speed Multilane Roads  

 

Preliminary analysis of the severe involvements suggested a positive effect of lane widths 

larger than 12 ft, or between 10 and less than 11 ft (see Figure 5-11). This might be explained by 

the urban settings where lower lane widths are used with lower operating speeds. The lanes less 

than 11 ft wide are generally found in urban areas. In an overall model using urban area crashes 

only, there is an increased benefit of lanes wider than 12 ft (odds ratio=0.806 vs. 0.855 and 0.866 

for the other two lane width groups). In the overall model in the rural area only, there is an 

increased benefit for lanes 10 or less than 11 ft wide (odds ratio=0.675) compared to the lanes 
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more than 12 ft wide (OR=0.882). For lanes less than 10 ft wide, the results agree with past 

studies (basis of the Florida greenbook) that suggested a lower bound of 10 ft. On the other hand, 

the odds ratios for lane widths between 11 and 12 ft, suggests that these widths may not be 

enough for the high-speed multilane arterials in urban areas. Probable causes may include a 

changing vehicle fleet (SUV’s), higher truck volumes and high operating speeds.  

Roadway curves have a negative effect on driver injury severity (OR=1.306). However, 

on high-speed multilane corridors this effect also varies in rural and urban areas. In the urban 

area model there is a much greater negative effect (OR=1.531) vs. in the rural area (OR=1.197). 

This result can be understood if the conditions on roadway curves in urban arterials are analyzed. 

Increased access point conflicts, visual distraction and difficulties in negotiating consecutive 

lanes changes from a driveway to a turn lane are conditions likely to increase the severity of 

crashes, making angle crashes more frequent in urban curves.  

Sidewalks have proven safety benefits for pedestrians by providing a secure path apart 

from vehicular traffic. Every model showed significant effects of the sidewalk width, which 

make this a strong contributing factor only emulated in achieving significance in every model by 

land use and speed limit. Its main benefit is seen in the unsignalized intersection model because 

the difference between the 6 ft and over width and the 4-6 ft width group is greater (OR 0.7662 

vs. 0.833). Having wider sidewalks increases the chance of improved roadside clear zones and 

less visual obstructions. The odds ratio of sidewalks with minimum length (0.851) shows benefit 

in comparison with no sidewalk, but sidewalk widths of 6 ft and over  showed increased benefit 

(OR=0.791). There is a clear benefit to wider sidewalks than the minimum standard, having 

substantive safety rather than nominal safety. 
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The presence of a friction course serves to reduce severe crashes in wet pavements by 

increasing skid resistance. The relationships between these two variables were discussed in 

Section 5.4.1.1. There is a tendency to increased sever injuries in sections of road with older 

friction courses. Newer open grade friction courses (such as FC-5) was found to have a positive 

effect (OR=0.831) when compared to the older types (FC-2). There is an increased benefit in an 

older friction course (FC-1, OR=0.736) which needs to be further investigated. The urban and 

rural area models points to some fundamental differences in the effects of this variable.  

The intersection variable had a marginally significant positive effect, probably due to the 

urban and rural area differences between the road entities. The interaction with the land use 

clearly shows a positive effect of intersections in urban areas (OR=0.862). In rural areas, there is 

no significant benefit, while in urban areas, there is a significant positive effect (OR=0.621). 

Further research is required to investigate these differences. 

Increased skid resistance numbers provide better friction to perform stopping (or 

swerving) maneuvers in wet pavements. The negative effect on driver injury severity 

(OR=1.198) comes unexpected. The interaction effect with land use indicates that there is a 

positive effect in urban areas (OR=0.919) although marginally significant. Both coefficients 

compared skid resistance numbers equal or greater to 35 (acceptable by FDOT standards) to 

those lower than 35. Analysis of an overall model using wet pavement crashes only was 

warranted since the benefits of added friction are expected on wet pavements. The model 

resulted in the same sign for these coefficients. Wet pavement crashes were analyzed by skid 

resistance numbers (see Figure 5-12, page 213). There is a clear trend of lower severe 

involvements ratio to total involvements for higher skid resistance numbers (>44). However, in 

the rural areas, there is a significant increase for higher skid resistance numbers. The interaction 
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lines before 35 are parallel, denoting a correlation between urban and rural areas for wet 

pavement crashes. This correlation is not as clear in the distribution of all crashes (see Figure 

5-12). There is some evidence of a systematic positive benefit in urban areas and negative effect 

in rural areas. However, in the overall models in rural and urban areas, the odds ratio remained 

greater than one. 
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Figure 5-12: Skid Resistance and Severe Injury Proportions for Wet Pavement Crashes on High-speed 
Multilane Roads  

 

According to the FDOT Skid Hazard Manual, for a skid overlay to be effective in 

reducing crashes, a significant portion of the crashes should be occurring on wet pavement. 

Evaluation of past skid hazard improvement projects, found that when at least 25 percent of 

crashes occurred during wet weather, crashes were more likely to decrease after the 
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improvement. Additional research should compare road sections with higher proportions of wet 

pavement crashes with the rest to determine the relationships (if any) between these sites and 

other road characteristics that may increase (or decrease) the risk of severe crashes. Moreover, 

this variable could be picking up some driver effects, similar to the overconfidence of the offset 

hypothesis explained earlier. In a recent study Mannering (2007) found that drivers who believe 

pavement quality on Indiana interstates is good or very good were more likely to drive at higher 

speeds. The effect was higher on speed limits 55 mph, compared to speed limits 65 and 70 mph. 

The auxiliary lane variable was only marginally significant in combined segment and 

unsignalized models. There is a tendency of decreased injury severity when two auxiliary lanes 

are present. This may be correlated with the presence of right and left turn lanes in unsignalized 

intersections. There is no evidence of a strong effect of the presence of auxiliary lanes in 

multilane arterials. This might be due to the weight of other variables such as Access Class, 

which are correlated to the auxiliary lanes on medians. 

The day of week variable compared weekend vs. weekdays. The overall model reflected 

a positive effect (OR=0.906) for drivers on weekends compared to the weekdays. Local 

experience suggests increased traffic volumes during weekends on multilane arterials during 

most of the day. A more uniform traffic volume across time of day reduces operating speed, 

decreasing the chance of severe crashes. 

5.4.3 Crash Type Models 

The driver injury severity analysis was developed using five crash type models. The 

combination intersection model was not deemed necessary in the original plan and the final 

model analysis confirmed this assertion. The same variables available for the road entity models 
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in order were tested to make both sets of models fully comparable. The main crash types 

reported on high-speed multilane roads were included in this analysis. Rear-end, angle, and left 

turn crashes are the most common crash types on high-speed multilane roads (refer to Figure 

5-10, page 198). The location of these crash types will be generally at intersections or driveways.  

The intended purpose of the analysis by crash type is to analyze the relationships between 

crash mechanisms and injury severity at these hazardous locations. The proportions of severe 

injuries to total driver involvements are shown in Figure 5-13, page 216. For crashes occurring 

on high-speed multilane roads, head-on collisions are the most likely to result in severe injury, 

where more than 11% of the driver involvements result in severe injury. In a close second, in 

fixed object crashes more than 9% of the involvements resulted in a severe injury. In third and 

fourth place, the angle and left turn collisions had very similar proportions of severe injury 

involvements, around 8% of the total driver involvements in multilane arterial corridors. The rest 

of the crash types (right turn, sideswipe, rear-end and other) had about half the proportion of 

severe involvements of the angle and left turn collisions. 

These results appear to follow a similar trend in regards to injury severity as that seen for 

other types of roads.  Head on crashes comprised only 1.96% of the total and did not present an 

appropriate sample for this analysis. On the other hand, fixed object crashes are the most 

significant of the segment crashes in regards to their severity (see Figure 5-13, page 216). The 

analysis of fixed object crashes will allow a better understanding of the contributing factors for 

crashes in high-speed multilane roads to compare their contributing factors to those on limited 

access facilities and two lane roads. 
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Figure 5-13: Severe Crashes Proportions by Crash Types on High-speed Multilane Roads  

 

The distinctive factors affecting driver injury severity in rear-end, angle, left turn and 

fixed object crashes contributed to the goals of this investigation. It improved our understanding 

of the crash mechanisms and injury severity contributing factors. It also provided additional 

evidence towards a proposal for injury severity analysis for crashes on high-speed multilane 

roads. This discussion will focus on the differences between these models and the road entity 

models already discussed. Detailed coefficient values and standard errors for all of the models 

can be found in Appendix E. 

5.4.3.1 Rear-end Crash Involvement Models 

The most common crash type is the rear-end, but is also considered less likely to produce 

severe injury than the other types of crashes, except for the sideswipe collision. The models 

developed for rear-end crashes tend to be richer in covariates due to the higher frequencies of 

crashes, even with lower proportions of severe crashes. The unsignalized intersections exhibit 

higher proportions of severe injuries, as for the other crash type models except fixed object. The 
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higher severity of crash involvements at or near unsignalized intersections is an expected result 

as shown in the analysis of Figure 5-13, page 216. The detailed model coefficients and standard 

errors are shown in Appendix E. 

 

Table 5-50: Goodness of fit Measures for the Final Analysis Rear-end Crash Models 

GOF Parameter SIGNAL UNSIG SEGMENT 
PURE 
SEG OVERALL 

Number of Variables 11 11 20 16 23 
Degrees of freedom 17 19 34 27 42 
Marginally significant coefficients 4 3 4 3 2 
Non-significant coefficients 0 4 7 6 8 
Sample size 10049 5701 20281 14580 33831 
Response severe/non-severe ratio 3.24% 3.68% 3.54% 3.48% 3.43% 
AIC 2656.988 1625.667 5500.224 3891.125 9084.313 
Hosmer-Lemeshow p-value 0.9912 0.0277 0.0995 0.3388 0.4483 
c value (area under ROC curve) 0.734 0.762 0.762 0.767 0.750 
Percent Concordant 72.1 75.3 75.3 75.8 74.0 
Adjusted R-squared 0.1009 0.1356 0.1416 0.1463 0.1240 

 

 

All of the rear-end crash models attained acceptable goodness of fit, except for the 

unsignalized intersection model (see Table 5-50). While most of the goodness of fit measures 

improved for all of the models, the unsignalized intersection model failed the Hosmer-

Lemeshow calibration tests. In addition, the adjusted R-squared values were lower for all of the 

rear-end crash models, which would traditionally be unexpected. It seems that the analysis of 

individual crash types yields less information in a model relative to the analysis at the corridor 

level or by road entities. 
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Table 5-51: Odds Ratios for Variables Found Significant in the Final Analysis Rear-end Crash Models 
Variable Level Overall Signal Unsig Segment Pure Seg 

Driver age 80-98 (vs. 25-64) 5 1.060†  0.678† 0.865† 0.914† 
Driver age 65-79 (vs. 25-64) 4 1.228* 1.283* 1.631 1.084† 0.836† 
Driver age 20-24 (vs. 25-64) 3 0.629 0.682* 0.422 0.585 0.620 
Driver age 15-19 (vs. 25-64) 2 0.625 0.611 0.694* 0.630 0.586 
Gender (Female vs. Male)  1.064† 0.663 0.681† 1.002† 1.647 
Seat Belt Used (vs. no) 1 0.255 0.298 0.171 0.227 0.306 
Gender*Seat Belt Used 1 1.590  3.259 1.908  
Speeding (Unknown vs. not) 2 0.632 0.585 0.748* 0.674 0.678 
Speeding (Yes vs. Not) 1 0.409 0.311 0.512 0.460 0.426 
At Fault driver (vs. not)  0.589 0.567  0.595 0.547 
FL Resident (vs. not)  1.770 2.486    
Physical Defects (vs. not)  2.179 2.258  2.222 2.393 
Driver Ejected (Yes/Partial vs. No)  1.817 4.427    
Point of Impact (driver side vs. not)    2.860   
Other vehicle type (vs. auto) 5 0.943†  1.219† 0.866† 0.983† 
Bike/motorcycle (vs. auto) 4 2.319  2.962 3.645 4.635 
Trucks/buses (vs. auto) 3 0.294  0.193 0.301 0.539* 
Van/Light Truck/Pick up (vs. auto) 2 0.834  0.722* 0.850* 0.909† 
Work Area (Entered vs. none) 3 0.771†   0.894†  
Work Area (Nearby vs. none) 2 0.530   0.450  
Private vehicle use (vs. not)      2.019 
Concrete Surface (vs. other)  0.468   0.418 0.219 
Urban area (vs. Rural)  0.812  0.587 0.791  
Speed limit (40-45 vs. other) 1 0.594 0.589 0.461 0.552 0.508 
adt per Lane (thousands)  0.947  0.940 0.929 0.926 
Avg Truck Factor (percent)     1.019 1.032 
Skid Res. (1≤FN<35 vs. FN≥35)  1.312   1.408 1.542 
Lane<10 ft (vs. 11-12 ft) 4 0.752 0.674*    
10ft ≤lane< 11ft (vs. 11-12 ft) 3 0.659 0.465    
Lane > 12 ft (vs. 11-12 ft) 2 0.678 0.698*    
Full Non-High Mast (vs. none) Y 1.359  1.909 1.455 1.326* 
Partial Non-High Mast (vs. none) P 0.755  0.850† 0.746 0.723* 
High Masts (full vs. none) Y 1.306†   1.605*  
High Masts (partial vs. none) P 4.016   4.943*  
Non applicable (vs. class 2,3,4) 9 1.051†     
Access class 7 (vs. class 2,3,4) 7 0.767*     
Access class 6 (vs. class 2,3,4) 6 0.746     
Access class 5 (vs. class 2,3,4) 5 0.850     
FC-3, FC-6, N/A (vs. FC-2) 9 1.037†   1.060† 1.095† 
Friction Course 5 (vs. FC-2) 5 0.797†   0.988† 1.064† 
Friction Course 4 (vs. FC-2) 4 0.807   0.764 0.689 
Friction Course 1 (vs. FC-2) 1 0.718   0.687 0.590 
Sidewalk width ≥ 6 ft (vs. < 4 ft) 3 0.774 0.664  0.697  
4 ft ≤ Sidewalk < 6 ft (vs. < 4 ft) 2 0.827 0.584  0.860*  
Weekend (vs. Weekday)  0.760   0.717 0.718 
Notes: * Effect is marginally significant (p<0.20); † Effect is not significant (p≥0.20)  
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Driver characteristics are not very significant in rear-end crash injury severity, as they 

were in the corridor models. Driver age loses significance in the rear-end models, especially for 

the older drivers. The very old driver level is no longer significant and the old driver level is only 

marginally significant. While there is no significant effect of the older drivers on rear-end crash 

severity, younger drivers have lower odds ratios in rear-end crashes than in all crashes (0.62 vs. 

0.77). The gender variable is no longer significant, except for the signalized intersection and pure 

segment models. The gender variable here refers to males vs. females. While males are at an 

advantage in signalized intersections (OR=0.663), there are at a disadvantage in pure segments 

(OR=1.647). This may be driveway-related crashes or lane changing crashes with different 

mechanisms and exposure than those related to signalized intersections. 

On the other hand, driver behavior continues to be important for the rear-end crash 

models, compared to the insignificance of driver characteristics. This agrees with an early study 

of the relationships between driver characteristics, behavior, vehicle types, crash types, and 

driver injury severity (Kim et al., 1995). The use of seat belts is more effective in rear-end 

crashes (OR=0.225) when compared to the overall model (all crashes, OR=0.303). This is also 

true for males (OR=1.590) vs. in the overall model (all crashes, OR=1.245). The speeding 

drivers had the same or very similar effects as in the overall model (all crashes, OR=0.409), as 

well as the at-fault drivers (0.589) and residence code (OR=1.770). Meanwhile, the ejected event 

has a negative, but much lower effect (OR=1.817) than in the overall model (all crashes, 

OR=4.270), while the effect is similar for the signalized intersection model (OR=4.427). Driver 

ejections from a rear-end crash with stopped vehicles at or near intersections generally involve 

high speed differentials, thus the highly negative effect. The point of impact was only significant 

in the unsignalized intersection model, but had a large negative effect (OR=2.860). Driver side 
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impacts may come as a mismatch with rear-end crashes. However, there is at least one situation 

with the potential of rear-end crashes with impacts on the driver’s side, as shown in Figure 5-14. 

In non-restricted median openings, vehicles waiting to make a turn are likely to encroach on the 

through travel lane increasing the risk for a rear-end crash with a stopped vehicle on the drivers 

side (back), which tends to be severe. 

 

 
Figure 5-14: Potential Rear-end Crash with Point of Impact on Driver’s Side on High-speed Multilane Roads 
(Source: Microsoft Virtual Earth)  

 

The type of vehicle continues to be an important variable for the rear-end crash models. 

Two main differences are evident for the heavy truck drivers and the bicyclists and 

motorcyclists. The drivers of heavy trucks have an increased positive effect (OR=0.294 vs. 0.357 

in overall model-all crashes), all else held constant. This suggests that in rear-end crashes, 

passenger vehicle drivers are at a major disadvantage with relation with heavy trucks. In 

addition, the bicycle and motorcycle vehicles are now at a major disadvantage with respect to 

passenger cars (OR=2.319) for rear-end crashes. Motorcyclist maneuvers, including improper 

lane changing (overtaking) may have a role in this situation. Also, the motor vehicle interactions 

with bicycles in the rightmost lane (with wide lane or designated bike lane) are likely to play a 
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role in this situation, since this variable was significant in the segment models, but not in the 

signalized intersection model.  

Crashes occurring in the work zone transition (entering) were significant in the injury 

severity models for rear-end crashes. In the case of rear-end crashes, the positive effect was 

increased (OR=0.530), which is expected for the type of collision that tends to be less severe 

than other types.  

In terms of roadway characteristics, the concrete surface factor proved to be significant 

for rear-end crashes in segments and in the overall model (rear-end crashes). Concrete surfaces 

have a positive effects with respect to driver injury severity (OR=0.468) when compared to other 

pavement surfaces. These concrete surfaces of the high-speed multilane roads tend to be in 

downtown areas and the relationship with land use is possible in this case because land use 

affects operating speeds and traffic signal metering, among other important factors affecting 

traffic flow. The urban areas have a slightly higher positive effect for the rear-end crashes 

(OR=0.812). It is possible than lower operating speeds are more likely to affect the severity of 

the rear-end crashes than other types. Indeed lower operating speeds (40-45 mph speed limit) 

have an increased positive effect on driver injury severity (holding all else constant) for rear-end 

crashes (OR=0.594) than in the overall model (all crashes, OR=0.676). The positive effect of 

traffic volumes (OR=0.947) is slightly increased, while the truck volume factor looses 

significance in the rear-end crash model. The skid resistance effect is greater (OR=1.312) 

holding all else constant, but not in the presence of additional interactions.  The presence of the 

concrete surface variable points to a possible increased importance of pavement characteristics in 

the rear-end crash injury severity models. 



222 

The lane width effects favored the widths between 11 and 12 ft, which is similar to the 

effect in the alternative urban area model. Intuition suggests that this relationship is likely to 

change by land use. In the two lighting variables the differences between the partial and full 

lighting were increased in comparison to the overall model (all crashes). This suggests that full 

roadway lighting is more beneficial in reducing injury severity of rear-end crashes. Likewise, the 

benefits of access management, especially class 6 (OR=0.746) were increased in comparison to 

the overall model (all crashes, OR=0.833). A similar trend followed with the friction course and 

sidewalk width. The increased benefits of improved roadway characteristics are most notable in 

the rear-end crashes, which are the most frequent. A final note is that drivers traveling on 

weekends have an increased positive effect (OR=0.760) vs. the overall model (all crashes, 

OR=0.906). 

5.4.3.2 Angle Crash Involvement Models 

The angle crash injury severity models generally had acceptable goodness of fit measures 

except for the combination segment and no-signalized intersection model, which failed the 

Hosmer-Lemeshow test (see Table 5-52, page 223). This evidence of misspecification in the 

overall angle crash model is likely due to the land use differences, as shown in the variables to be 

discussed. However, the adjusted R-squared values denoted improved realized model 

information potential over the rear-end model. Many of the variables loose significance; the 

interpretative power of the models were degraded. The unsignalized intersections exhibit higher 

proportions of severe injuries, as for the rest of the crash types models correlated to intersections 

(rear-end, angle and left turn), as expected. The model coefficients and standard errors are 

detailed in Appendix E. 
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Table 5-52: Goodness of fit Measures for the Final Analysis Angle Crash Models 

GOF Parameter SIGNAL UNSIG SEGMENT 
PURE 
SEG OVERALL 

Number of Variables 11 12 15 12 19 
Degrees of freedom 20 18 29 23 35 
Marginally significant coefficients 0 0 1 2 2 
Non-significant coefficients 4 2 7 7 6 
Sample size 5401 6273 11052 4779 16802 
Response severe/non-severe ratio 7.55% 9.58% 8.51% 7.11% 8.10% 
AIC 2631.097 3434.963 5605.323 2169.483 8323.191 
Hosmer-Lemeshow p-value 0.7879 0.2267 0.0505 0.8162 0.0483 
c value (area under ROC curve) 0.728 0.750 0.748 0.747 0.741 
Percent Concordant 72.3 74.6 74.4 74.0 73.7 
Adjusted R-squared 0.1316 0.1839 0.1754 0.1667 0.1601 

 

 

The amount of driver vehicle- and crash-related variables in this model remained 

relatively stable, with the addition of the contributing cause and vision obstructed (see Table 

5-53, page 224). In regards to roadway-related variables, auxiliary lanes variables and friction 

course were not significant in these models, but the shoulder width entered the overall angle 

crash model. The vision obstructed variable was significant only in the segment models, making 

it a new variable in comparison to the overall and rear-end models. Meanwhile, the contributing 

cause was also significant in the unsignalized intersection models. This was expected as angle 

crashes are likely to be influenced by visibility problems as well as driver impatience 

(aggressiveness) and impairment (DUI) in driveways and minor roads.  

The effects in driver age group had an inversed situation when compared to the rear-end 

crashes. Old and very old drivers had a significant disadvantage (OR=1.663 and 2.099) when 

compared to middle age drivers in angle crashes. Gender was also significant, with the females at 

a significant disadvantage with respect to male drivers (OR=1.446), higher than in the overall 

model (all crashes, OR=1.217). The point of impact is on the side of the vehicle, affording less 

protection to the driver, increasing the importance of physiological conditions on crash outcome. 
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Table 5-53: Odds Ratios for Variables Found Significant in the Final Analysis Angle Crash Models 

Variable Level Overall Signal Unsig Segment Pure 
 Driver age 80-98 (vs. 25-64) 5 2.099 2.484 2.638 2.127 1.494† 

Driver age 65-79 (vs. 25-64) 4 1.663 1.443 1.991 1.887 1.886 
Driver age 20-24 (vs. 25-64) 3 0.852* 0.666 1.057† 0.962† 0.843† 
Driver age 15-19 (vs. 25-64) 2 0.943† 0.983† 1.034† 0.938† 0.816† 
Gender (Female vs. Male)  1.446 1.678 1.525 1.404 1.318 
Seat Belt Used (vs. no) 1 0.301 0.308 0.305 0.303 0.294 
Speeding (Unknown vs. not) 2 0.693 0.794† 0.454 0.625 0.869† 
Speeding (Yes vs. Not) 1 0.640 0.690 0.607 0.593 0.536 
Other Cont. Cause (vs. none) 4 1.482  1.774 1.890 1.849 
Aggressive Driving (vs. no improper) 3 2.566  5.960 3.904 2.333* 
Alcohol/Drug use (vs. no improper act) 2 1.778  2.452 2.100 1.572 
At Fault driver (vs. not)  0.469  0.310 0.391 0.521 
Red light running (vs. not)  1.326     
Physical Defects (vs. not)  1.549     
Driver Ejected (Yes/Partial vs. No)  4.163 5.443 5.312 4.127 3.659 
Off Roadway (vs. not)  1.577   1.773  
Impact (driver side vs. not)  1.791 1.878 2.078 1.846 1.482 
Other vehicle type (vs. auto) 5 0.684†   0.816† 0.733† 
Bike/motorcycle (vs. auto) 4 1.097†   1.043† 1.042† 
Trucks/buses (vs. auto) 3 0.254   0.260 0.230 
Van/Light Truck/Pick up (vs. auto) 2 0.793   0.750 0.726 
Private vehicle use (vs. not)    2.019   
Urban area (vs. Rural)  0.689 0.733 0.570 0.635 0.666 
Intersection (vs. not)  1.315   1.396  
Speed limit (40-45 vs. other) 1 0.683 0.638 0.607 0.677 0.742 
adt per Lane (thousands)  0.969     
Skid Res. (1≤FN<35 vs. FN≥35)    1.240   
Lane<10 ft (vs. 11-12 ft) 4 0.737     
10ft ≤lane< 11ft (vs. 11-12 ft) 3 0.835†     
Lane > 12 ft (vs. 11-12 ft) 2 0.822*     
Curb Shoulder (vs. Paved) 3  1.660    
Unpaved Shoulder (vs. Paved) 2  0.949†    
Shoulder width ≥ 10 ft (vs. <6ft) 4 0.837†     
8 ft ≤ Shoulder width < 10 ft (vs. <6ft) 3 0.649     
6 ft ≤ Shoulder width < 8 ft (vs. <6ft) 2 0.633     
Non applicable (vs. class 2,3,4) 9 0.906† 0.879†  0.891†  
Access class 7 (vs. class 2,3,4) 7 0.623 0.578  0.619  
Access class 6 (vs. class 2,3,4) 6 0.695 0.361  0.842†  
Access class 5 (vs. class 2,3,4) 5 0.756 0.698  0.752  
Sidewalk width ≥ 6 ft (vs. < 4 ft) 3  0.579    
4 ft ≤ Sidewalk < 6 ft (vs. < 4 ft) 2  0.720    
Other (vs. no vision obstruction) 4    0.835† 0.523† 
Parked/Stopped Veh (vs. no obstruction) 3    1.227* 1.488* 
Bad Weather, Smoke, Glare (vs. no obst) 2    1.749 3.555 
Notes: * Effect is marginally significant (p<0.20); † 
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The physical defects and ejection events had similar effects than in the overall model (all 

crashes). Driver behavior was important in the angle crash models. Use of seat belts remained 

similar to the effect on the overall model (all crashes). Likewise, drivers at fault have a similar 

positive effect than in the overall model (all crashes). It would be of interest to investigate the 

relationship between at fault drivers and collision sequence to find out whether these are 

correlated with the striking vehicle. The harmful effects of speeding, aggressive driving, driving 

under the influence and red light running were increased with respect to the overall model (all 

crashes). These results suggest a strong correlation between driving behavior and angle crashes. 

The results with respect to the crash- and vehicle-related variables suggest that vehicle 

protection becomes more important in angle crashes and off road (driveway) crashes are an 

important contributing factor. The off roadway negative effect (OR=1.577) contrasts sharply 

with the positive effect in the overall model (all crashes, OR=0.613). An off road angle crash 

will generally be related to driveways. Access management, which includes driveway location 

and design, would play an important role in preventing some of these highly severe crashes. 

Vehicle protection and configuration is important in the angle crash outcomes. Drivers in angle 

crashes with vehicle impact on their side had a significant negative effect (OR=1.791) vs. a non-

significant effect in the overall model (all crashes). Both the type of vehicle and private vehicle 

use exhibited an increased negative effect for the passenger car drivers in angle crashes when 

compared to the overall model (all crashes). 

The speed limit and adt per lane variables retained similar effects when compared to the 

overall model (all crashes). Meanwhile the injury severity difference between involvements in 

urban and rural areas was more acute in the angle crash models (OR= 0.689) when compared to 

the overall model (all crashes, OR=0.879). Skid resistance lost significance in the overall model 



226 

(angle crashes), but the effect in the unsignalized intersection model remained similar to that in 

the respective (unsig) model for all crashes. The lane width effect for lanes less than 12 ft was 

not significant. On the other hand, the positive effect of lanes wider than 12 ft (OR=0.737) was 

increased for angle crashes in comparison to the overall model (all crashes, OR=0.827). It would 

be counterintuitive that increased crossing distance for the road would reduce angle crash 

frequency or severity. However, two factors have to be taken into account: congestion in urban 

areas with multilane roads of more than four lanes and the rightmost lane width effect on 

increased visibility for the driver on a minor road (or driveway). In urban areas with visibility 

obstructions (generally with very narrow curb shoulder), a wider rightmost lane allows the driver 

a better view of the coming traffic. The type of shoulder variable was only significant for one 

coefficient in the signalized intersection model, with a negative effect of curb shoulders 

(OR=1.660), higher than in the overall model (all crashes, OR=1.162). On the other hand, 

increased shoulder width from less than 3.5 ft (OR=0.633) to between 3.5 and 6 ft (OR=0.649) 

only had a small increase in the positive benefit. The relationships between land use, lane width, 

shoulder type and width; and injury severity in corridors need further investigation. 

The positive effects of increased access management are more noticeable in the angle 

crash models, with class 5 (OR=0.756) exhibiting the most benefit vs. the overall model (all 

crashes, OR=0.879). Even tough class 5-7 have similar intersection spacing, the medians 

openings are restricted for class 5. The positive effect of the median opening restrictions is 

suggested for one of the most severe collision types. There is an increased benefit for the 

sidewalks greater than 6 ft in angle crashes at or near signalized intersections (OR=0.579) when 

compared to all collision types (OR=0.665); this denotes the important role of increased 

visibility in reducing angle crash severity.  
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5.4.3.3 Left turn Crash Involvement Models 

The left turn models exhibited acceptable goodness of fit (see Table 5-54). The detailed 

model coefficients and standard errors are shown in Appendix E. In terms of the significant 

coefficients, it performed very well in comparison to the overall model (all crashes). The AIC 

values are generally lower than for the rear-end and angle crash models, while the adjusted R-

squared are lower than the overall model (all crashes), similar to the other crash type models. 

The unsignalized intersections exhibit higher proportions of severe injuries, expected. 

 

Table 5-54: Goodness of fit Measures for the Final Analysis Left turn Crash Models 

GOF Parameter SIGNAL UNSIG SEGMENT 
PURE 
SEG OVERALL 

Number of Variables 8 14 10 6 14 
Degrees of freedom 17 25 13 9 24 
Marginally significant coefficients 1 4 0 0 4 
Non-significant coefficients 6 4 2 1 4 
Sample size 2941 6289 3993 1388 7023 
Response severe/non-severe ratio 8.77% 9.59% 7.54% 6.34% 7.99% 
AIC 1623.575 3433.337 1965.075 605.252 3589.096 
Hosmer-Lemeshow p-value 0.7344 0.7437 0.8523 0.6008 0.2401 
c value (area under ROC curve) 0.718 0.759 0.710 0.743 0.722 
Percent Concordant 71.0 75.5 70.1 71.8 71.7 
Adjusted R-squared 0.1187 0.1920 0.1168 0.1315 0.1209 

 

 

The variables found significant in the left turn models present a combination of driver-, 

vehicle-, crash-, road- and environment-related variables similar to that in other crash type 

models (see Table 5-55, page 228). The common feature of these models is that most changes 

occur in crash and roadway variables, while most driver and vehicle variables stayed in the 

models. The lack of many variables in the overall (left turn crashes) model and the similar effects 
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of the variables to the angle crash model allows a comparison between the two crash types (in 

terms of injury severity) that may justify additional analysis in future research. 

 

Table 5-55: Odds Ratios for Variables Found Significant in the Final Analysis Left turn Crash Models 

Variable Level Overall Signal Unsig Segment Pure Seg 
Driver age 80-98 (vs. 25-64) 5 2.099 1.798 2.623 2.467   
Driver age 65-79 (vs. 25-64) 4 1.588 1.546 1.979 1.754   
Driver age 20-24 (vs. 25-64) 3 0.855† 0.902† 1.049† 0.841†   
Driver age 15-19 (vs. 25-64) 2 0.757* 0.745† 1.022† 0.826†   
Gender (Female vs. Male)   1.542 1.585 1.528 1.661 2.543 
Seat Belt Used (vs. no) 1 0.305 0.310 0.306 0.309 0.374 
Speeding (Unknown vs. not) 2     0.451     
Speeding (Yes vs. Not) 1     0.611     
Other Cont. Cause (vs. none) 4     1.849     
Aggressive Driving (vs. no improper) 3     5.996     
Alcohol/Drug use (vs. no improper act) 2     2.466     
At Fault driver (vs. not)   0.578 0.534 0.308 0.615   
Driver Ejected (Yes/Partial vs. No)   5.487 6.746 5.390 4.031 8.869 
Off Roadway (vs. not)   3.674     3.855   
Impact (driver side vs. not)   1.529   2.111 1.738 2.257 
Other vehicle type (vs. auto) 5 0.327* 0.000†       
Bike/motorcycle (vs. auto) 4 0.572* 0.476†       
Trucks/buses (vs. auto) 3 0.316 0.133       
Van/Light Truck/Pick up (vs. auto) 2 0.650 0.656       
Private vehicle use (vs. not)       2.012     
Urban area (vs. Rural)       0.566 0.714   
Median Type (paved vs. raised) 2 0.697     0.547   
Speed limit (40-45 vs. other) 1 0.653 0.664 0.623 0.586   
Avg Truck Factor (percent)   1.029         
Skid Res. (1≤FN<35 vs. FN≥35)   1.227   1.277     
Full Non-High Mast (vs. none) Y 1.515         
Partial Non-High Mast (vs. none) P 0.848†         
Non applicable (vs. class 2,3,4) 9 1.248* 1.482*     0.949† 
Access class 7 (vs. class 2,3,4) 7 0.433 0.222     0.175 
Access class 6 (vs. class 2,3,4) 6 0.918† 1.027†     0.403 
Access class 5 (vs. class 2,3,4) 5 0.881† 0.869†     0.545 
3 or more Auxiliary Lanes (vs. none) 3     1.204†     
2 Auxiliary Lanes (vs. none) 2     0.691     
1 Auxiliary Lanes (vs. none) 1     1.215*     
FC-3, FC-6, N/A (vs. FC-2) 9     1.219*     
Friction Course 5 (vs. FC-2) 5     1.505*     
Friction Course 4 (vs. FC-2) 4     1.019†     
Friction Course 1 (vs. FC-2) 1     0.697*     
Weekend (vs. Weekday)           1.764 
Notes: * Effect is marginally significant (p<0.20); † Effect is not significant 
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The driver-related variables had generally similar effects than the angle crash models. 

The effects in driver age group had an inversed situation when compared to the rear-end crashes. 

Old and very old drivers had a significant disadvantage (OR=1.588 and 2.099) when compared 

to middle age drivers in left turn crashes, almost equal to the effects in angle crashes. Gender 

was also significant, with the females at a significant disadvantage with respect to male drivers 

(OR=1.542), higher than in the overall model (all crashes, OR=1.217). In these types of crashes, 

the point of impact is generally on the side of the vehicle, affording less protection to the driver, 

thus the increased importance of physiological conditions in the crash severity outcome. The 

physical defects factor was no longer significant in the left turn crash model. Meanwhile the 

ejection events had an increased negative effect (OR=5.487) than in the overall model (all 

crashes, OR=4.270). Driver behavior was not as important in the left turn crashes as in the angle 

crash models. The effect of seat belt usage and drivers at fault remained similar to the 

corresponding effects on the overall model (all crashes). However, the harmful effects of 

speeding, aggressive driving, driving under the influence and red light running were only 

significant for the unsignalized intersections. For left turn and angle crashes at or near 

unsignalized intersections, the effects (odds ratios) of speeding, aggressive driving and driving 

under the influence were similar to those in the angle crash models. These results suggest a 

strong correlation between driving behavior and left turn crashes for the unsignalized 

intersections and a similarity with left turn crashes, with respect to driver injury severity. 

Meanwhile, the crash and vehicle factors had similar effects that in the angle crash 

models. The vehicle type and crash configuration effects were also increased in relation to the 

overall model (all crashes). The off roadway negative effect (OR=3.674, compared to OR=1.577 

for angle crashes) contrasts sharply with both the positive effect in the angle and overall models 
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(all crashes, OR=0.613). The results suggest similar crash mechanisms of angle and left turn 

crashes and that off road (driveway) crashes are an increasingly important contributing factor, 

more so than in angle crashes. An off road angle crash will generally be related to driveways. 

Access management, which includes driveway location and design, would play an important role 

in preventing some of these highly severe crashes. Vehicle protection and configuration is 

important in the left crash outcomes. Drivers in left turn crashes with vehicle impact on their side 

had a significant negative effect (OR=1.529) vs. a non-significant effect in the overall model (all 

crashes). Both the type of vehicle and private vehicle use exhibited an increased negative effect 

for the passenger car drivers in left crashes when compared to the angle and overall model (all 

crashes). Compared to angle crashes, the positive effects for LTV drivers was increased 

(OR=0.650 vs. 0.793 in angle crashes), while for the heavy trucks it was decreased (OR=0.316 

vs. 0.254 in angle crashes). This suggests an increased negative effect on the injury severity of 

drivers of passenger vehicles for left turn crashes.  

In terms of roadway-related variables, the important variable land use was not significant 

for the left turn crash overall model. The good performance of this model and the lack of 

significance of the land use add to the proof of the important effect of land use on the slight 

misspecification in the overall angle crash model. In unsignalized intersections in urban areas, 

the positive effect on injury severity was increased (OR=0.566) when comparing to the overall 

model (all crashes, OR=0.808), suggesting an increasing negative effect of unsignalized 

intersections in rural areas in the severity of left turn crashes. The median type paved two-way 

turn lane (TWTL) significance in the segment model suggests a positive effect of TWTL 

(OR=0.697) vs. raised medians for the left turn crashes in midblock locations. Although TWTL 

may increase the chance of head-on collisions, it is also true that provides a refuge space to allow 
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midblock left turn movements from the minor roads into the multilane facility in two stages. It 

also improves the chances of avoiding oncoming traffic flows in both directions, in contrast to 

the example shown in Figure 5-14, page 220, where the median opening does not provide 

enough space for a left turn from the major road. These median treatments are applied for 

different traffic and road (drainage) conditions. 

The speed limit and average truck factor variables retained similar effects when 

compared to the overall model (all crashes). The adt per lane was not significant in the left turn 

crash model. The driver injury severity in left turn crashes was negatively influenced by 

increasing heavy truck traffic (OR=1.029). This effect was not significant in the angle crash 

models. This might be related to the different acceleration characteristics for a left turn of heavy 

truck. In addition, the heavy truck size (and mass) may be a contributing factor increasing the 

severity of left turn crashes. The non significance of adt agrees with recent research modeling 

injury severity for total left turn crashes related to signalized intersections in arterial corridors 

which also showed traffic volume significance for certain patterns of left turn crashes (Wang and 

Abdel-Aty, 2008). Additional research is needed to compare left turn crashes at unsignalized and 

driveway-related midblock locations to those in signalized intersections in high-speed multilane 

arterials. 

Increasing skid resistance had increased negative effect on left turn crashes (OR=1.227) 

compared to the overall model (all crashes, OR=1.198). For the overall angle crash model this 

effect was not significant. In addition, the effect in the unsignalized intersection model 

(OR=1.277) was higher than the corresponding effect in the model (unsig) for angle crashes 

(OR=1.240). The increased importance of skid resistance for crashes at intersections involving a 

left turn movement was expected. However, the type of friction course was not significant for the 
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(overall) left turn crashes, but only significant for the unsignalized intersection model. The 

through lane width effect was not significant for left turn crashes, which was also as expected. 

On the other hand, the number of auxiliary lanes did have a significant positive effect. Drivers 

making left turns from a double left turn lane unsignalized approach on the major road had a 

positive effect on injury severity (OR=0.691), larger than in the overall mode (all crashes, 

OR=0.882). This effect might be due to the presence of double left turn lanes on closely spaced 

intersections in urban areas. 

The positive effects of increased access management on driver injury severity are not 

manifest in the left turn crashes as they are for the angle crashes. Only class 7 is significant for 

left turn crashes (OR=0.433) with an increased positive benefit when compared to angle crashes 

(OR=0.623). This is probably due to the positive effect of traffic volumes in urban closely 

spaced intersections (class 7) on left turn crash severity. Traffic volumes and land use may have 

an important effect on the left turn crashes during weekends, which has a negative effect 

(OR=1.764) in contrast with the positive effect for the overall model (all crashes, OR=0.906). It 

seems that there are indirect influences of traffic volume and land use in driver injury severity 

outcomes of left turn crashes. 

5.4.3.4 Fixed Object Crash Involvement Models 

Fixed object crashes are the most severe crash types in this analysis. There was sufficient 

numbers of these crashes to develop a set of models with acceptable goodness of fit measures 

(see Table 5-56, page 233).  The detailed model coefficients and standard errors are shown in 

Appendix E. 
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Table 5-56: Goodness of fit Measures for the Final Analysis of Fixed Object Crash Models 

GOF Parameter SIGNAL UNSIG SEGMENT 
PURE 
SEG OVERALL 

Number of Variables 2 7 14 13 7 
Degrees of freedom 3 10 23 21 12 
Marginally significant coefficients 0 0 3 3 2 
Non-significant coefficients 1 3 4 4 1 
Sample size 568 761 4298 3537 5011 
Response severe/non-severe ratio 12.32% 9.59% 14.61% 15.69% 14.29% 
AIC 412.638 437.989 3042.54 2619.059 3597.015 
Hosmer-Lemeshow p-value 0.7026 0.8551 0.7322 0.2587 0.1100 
c value (area under ROC curve) 0.642 0.754 0.767 0.770 0.743 
Percent Concordant 51.7 74.2 76.5 76.8 74.0 
Adjusted R-squared 0.0640 0.1748 0.2238 0.2265 0.1824 

 

 

The variables entered into these models were considerably less than in the previous 

models (see Table 5-57, page 234). The different crash mechanism and the presumed 

prominence of single vehicle crashes lead to fewer interactions with other vehicles and other 

road. However, driver characteristics and behavior can be important factors for these crashes. 

Another main difference is that the most effective model is the segment combined with 

unsignalized intersections. This is expected as most fixed object crashes occur on road segments. 

A notable exception is unsignalized intersections on a roadway curve, which showed a 

significant negative effect.  

Some important differences with the road entity models were found in the fixed object 

crash model. Traditional conceptions of off roadway crashes on two-lane roads are mostly not 

applicable to high-speed multilane arterial corridors. This analysis is important since it shows 

some of the road characteristics that affect crashes that generally occur outside of the travel 

lanes. The precursors to these crashes may be varied, but the outcome of the crash is more likely 

to be influenced by roadside objects or other road features than other types of crashes. 
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Table 5-57: Odds Ratios for Variables Found Significant in the Final Analysis of Fixed Object Crash Models 

Variable Level Segment Pure 
Segment Unsig Overall Signal 

Driver age 65-98 (vs. 25-64) 4 1.507 1.145† 3.507   
Driver age 20-24 (vs. 25-64) 3 0.847* 0.801* 1.063†   
Driver age 15-19 (vs. 25-64) 2 0.733 0.699 0.797†   
Driver Ejected (Yes/Partial vs. No)  12.511 4.119 5.706 3.945  
Female*Ejected  3.794     
Gender (Female vs. Male)  1.240  2.138   
Seat Belt Used (vs. no) 1 0.368 0.378 0.379 0.395  
Speeding (Unknown vs. not) 2 1.061† 1.103† 0.753† 1.184† 2.627 
Speeding (Yes vs. Not) 1 0.530 0.589 0.354 0.582 0.835† 
Other Cont. Cause (vs. none) 4 2.599 2.190  2.327  
Aggressive Driving (vs. no improper) 3 2.291 1.869  1.768  
Alcohol/Drug use (vs. no improper act) 2 2.050 1.937  1.869  
At Fault driver (vs. not)  0.467 0.443  0.446  
Off Roadway (vs. not)    1.803   
Impact (driver side vs. not)      2.850 
Other maneuver (vs. straight ahead) 4 1.254* 1.380*  1.238*  
Left Turn (vs. straight ahead) 3 0.341 0.439  0.434  
Slowing / Stopping  (vs. straight ahead) 2 1.284† 1.470†  1.588*  
Private vehicle use (vs. not)   2.245    
Multivehicle (vs. single vehicle crash)   0.665    
Urban area (vs. Rural)  0.711 0.740  0.914  
Roadway Curve (vs. not)  1.620 1.481 2.625   
Curb Shoulder (vs. Paved) 3 1.094† 1.135†    
Unpaved Shoulder (vs. Paved) 2 0.802* 0.821*    
adt per Lane (thousands)  0.909 0.904    
Full Non-High Mast (vs. none) Y 1.647     
Partial Non-High Mast (vs. none) P 1.047†     
Notes: * Effect is marginally significant (p<0.20); † Effect is not significant (p≥0.20)  

 

 

The driver age variable was reduced to four groups were old and very old drivers were 

combined into one category. Older drivers 65 and more experienced a significant negative effect 

(OR=1.507), while young drivers had no significant effect and very young drivers had a positive 

effect (OR=0.733). Meanwhile the gender (female vs. male drivers) had also a significant effect 

(OR=1.240) which suggests that driver characteristics affect injury severity in fixed object 
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crashes. The positive effect of seat belt usage is increased (OR=0.368) in comparison to the 

overall model (all crashes, OR=0.303). The ejection event had the greatest magnitude (12.511) of 

all odds ratios in the models. There was also a significant relationship between gender and the 

ejection event (OR=3.794), which is an additional negative effect for female drivers in fixed 

object crashes. The negative effects of unsafe driver behaviors including speeding (OR=0.530), 

driving under the influence (OR=2.291) and aggressive driving (2.050) were increased when 

compared to the overall model (all crashes, OR’s=0.409, 1.748 and 1.593, respectively). On the 

other hand, drivers at fault had a positive effect (OR=0.467). This suggests that in the fixed 

object crashes, most driver-related effects were amplified. 

A few crash variables were significant in this model. Interestingly enough, type of 

vehicle was not significant. For fixed object crashes at or near signalized intersections, there is a 

negative effect (OR=2.850) on injury severity for drivers that hit an object on their side of the 

vehicle. For drivers on left turn maneuvers, there is a positive effect on injury severity 

(OR=0.341) significant on the segment model that suggests a correlation with driveway crashes. 

It seems that these fixed object crashes refer to drivers on a left turn from the major road into a 

driveway with a fixed object (such as a sign), which are not as likely to result in severe injury as 

other fixed object crashes. Drivers of private vehicles (usually passenger cars) are at a 

disadvantage (OR=2.245) in terms of injury severity when involved in a fixed object crash in a 

high-speed multilane road segment. However, drivers involved in multivehicle crashes and with 

a fixed object are at an advantage (OR=0.665) over those involved in single vehicle crashes.   

The off roadway crash had a negative effect for the unsignalized intersections 

(OR=1.803), which is contrary to the effect on all crashes (OR=0.613). This point to an area 

where certain characteristics tends to change the severity risk for fixed object crashes. There was 
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a highly negative effect for fixed object crashes on unsignalized intersections on roadway curves 

(OR=2.625) on driver injury severity, much higher than for the overall model (all crashes, 

OR=1.510). This might be due to the tendency of utility poles to cluster around unsignalized 

intersections (by necessity) and limited right of way or poor utility planning. One example of a 

utility pole placed too close to the intersection corner in a curved road section is displayed in 

Figure 5-15. 

 

 
Figure 5-15: Examples of Fixed Object (Utility Pole) Close to the Corner of an Unsignalized Intersection in a 
Curved Section of SR-423 (Lee Road)  (Source: Microsoft Virtual Earth) 

 

The positive effect of urban areas on driver injury severity after a fixed object crash 

(OR=0.711) is greater when compared to all crashes (OR=0.879). The negative effect of 

roadway tangent sections is significant (OR=1.620) and more pronounced than in the overall 

model (all crashes, OR=1.306). The type of shoulder is only marginally significant but it 

suggests a benefit of unpaved shoulders vs. a curb shoulder. It is likely that there is collinearity 
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with land use. An important effect is traffic volume, with pronounced benefit OR=0.909) in 

comparison with the overall model (all crashes, OR=0.972). Another important road design 

characteristic that was significant, lighting density, exhibited a negative effect (OR=1.647) more 

so than in the overall model (all crashes, OR=1.129). This result has to be interpreted in the 

context of land use and a possible offset of the road lighting benefit by driver unsafe behavior, 

such as speeding. The relationships between these factors in the fixed object crash models and 

land use should be further investigated. 

5.4.3 Relative Variable Significance 

The relative variable significance method described in Section 3.5.4 and applied in 

Section 4.2.2 in the exploratory analysis was analyzed for the road entity models. In addition, an 

analysis of the relative significance of the variables in the crash type’s models is presented. The 

variable relative significance of the best performing models for rear-end, angle, left turn and the 

fixed object crashes are presented here. The analysis of variable significance will allow assessing 

the most important effects on driver injury severity. There are other unobserved effects likely to 

affect the crash outcomes. However, by analyzing the most important effects with the available 

data, some unobserved factor may be intuitively theorized  

In general, there are many factors affecting crash occurrence that cannot be obtained in a 

police crash report. Our main source of knowledge of crash occurrence and involvements comes 

from these reports which have known limitations. Within these limitations, however, it is 

possible to obtain valuable information and make conclusions about crash occurrence. It is likely 

that conditional crash outcomes (given that a crash occurs) could be more specifically predicted 

because there is more post crash event information available. 
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Table 5-58: Variable Relative Significance in the Final Analysis Road Entity Models 

Variable Overall Inters Signal Segment Pure 
Segment 

Non- 
signal 

Driver_Ageg_Group_x Major Major Major Major Major Major 
Ejected_x Major Major Major Major Major Major 

Speeding_x Major Major Major Major Major Major 
Gender_x Moderate Major Major Minor Major Major 

Safety_Equipment_x Major Major Major Major Major Major 
Gender_x*Safety_Equipment Moderate   Moderate   

At_Fault_driver_x Major Major Major Major Major Major 
Red_light_running_x  Moderate Moderate    

Residence_Code_x Minor Moderate Moderate    
Physical_Defects_x Major Moderate Moderate Major Major  

Harmful_Event_Group_ Major Major Major Major Major Major 
Contributing_Cause_x Major Major  Major Major Major 

Type_of_Vehicle_x Major Major Major Major Major Major 
Vehicle_Maneuver_x   Moderate    

Point_Impact_x Marginal Marginal Major Marginal  Major 
Point_Impact*Speeding_x Moderate Moderate  Minor   

Off_Roadway Major   Major Major  
Off_Roadway*Speeding_x Moderate   Major Moderate  
Off_Roadway*Multivehicle Major      

nWork_Area_x Moderate   Moderate   
Multivehicle Major      

Intersection*Multivehicle Major      
Private_vehicle_use_    Moderate   

Private_veh*nAVGTFACT    Minor   
Speed_limit_x Major Major Major Major Major Major 

ADT_PER_LANE Major   Major Major Moderate 
nAVGTFACT Moderate   Moderate Moderate  

LIGHTING Moderate   Minor   
Traffic_Control Minor   Major   

Access_class Major Major Major    
nRural_Urban Minor Major Moderate Moderate Marginal Major 

nType_of_Shoulder Moderate Minor Minor   Moderate 
Lane_width Major Major Moderate Moderate   

Roadway_Curve Major   Major Moderate  
Sidewalk_width_group Major Major Major Moderate Minor Moderate 

LIGHTCDE Major Minor  Moderate Moderate  
Type_Friction_Course Major Moderate Moderate Moderate Moderate  

Intersection Marginal      
Intersection*nRural_Urb Moderate      

Skid_Resistance Major Minor  Major Major  
nRural_Urban*Skid_Resis Marginal Marginal  Marginal Minor  

AUX_Lane_Num    Moderate  Moderate 
Day_of_Week Moderate      

Note: Major (p<0.001), Moderate (0.001≤p<0.01) , Minor (0.01≤p≤0.05) and Marginal (p>0.05) 
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In the road entity models, most driver-, crash- and vehicle-related variables have a major 

significance (see Table 5-58, page 238). Driver age, speeding, driver at fault, contributing cause 

and physical defects had a major relative importance. Gender and the gender interaction with 

safety equipment had a moderate importance. Meanwhile, red light running only had moderate 

importance in the signal intersection model. Among the crash and vehicle variables, most 

variables had major relative importance. These included ejected event, harmful event (collision 

type), type of vehicle, off roadway (segment models), multivehicle and point of impact. Other 

variables such as work area and some off roadway and point of impact interactions had moderate 

importance. In the case of roadway variables, the major relative significance variables (in the 

overall model) included speed limit, adt per lane (segment models), access class (signalized 

intersections), lane width, roadway curve (segment models), sidewalk width, lighting (non-high 

mast), skid resistance (segment models) and type friction course. Other variables with moderate 

relative significance were average truck factors, type of shoulder and high-mast lighting.  

One of the major differences between these final models and the models in the 

exploratory analysis was the variable relative significance. Few of the roadway-related variables 

available in the crash report had a major importance in the exploratory models. Only speed limit, 

adt per lane, and traffic control had major importance in some of the earlier models. On the other 

hand, many roadway-related characteristics had major importance in the final analysis. This is 

due in part to the better data preparation without data repetition. Also, the addition of a 

significant amount of roadway information from RCI was pivotal in improving the final analysis 

models and the results of this investigation. 
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Table 5-59: Variable Relative Significance in the Final Analysis Crash Type Models 

Variable 
Rear- 
End Angle Left 

Turn 
Fixed 
Object 

Segment Unsig Unsig Segment 
Driver_Ageg_Group_x Major Major Major Moderate 
Ejected_x   Major Major Major 
Speeding_x Major Major Major Major 
Gender_x Marginal Major Major Minor 
Gender_x*Ejected_x       Moderate 
Safety_Equipment_x Major Major Major Major 
Gender_x*Safety_Equipment Moderate       
At_Fault_driver_x Major Major Major Major 
Physical_Defects_x Moderate       
Contributing_Cause_x   Major Major Major 
Type_of_Vehicle_x Major       
Vehicle_Maneuver_x       Moderate 
point_impact_x   Major Major   
nWork_Area_x Minor       
Private_vehicle_use_x   Minor Minor   
Speed_limit_x Major Major Major   
ADT_PER_LANE Major     Major 
nAVGTFACT Minor       
Concrete_Surface Minor       
nRural_Urban Moderate Major Major Moderate 
nType_of_Shoulder       Minor 
Roadway_Curve       Moderate 
Sidewalk_width_group Minor       
LIGHTCDE Moderate     Minor 
LIGHTING Minor       
Type_Friction_Course Minor       
Skid_Resistance Moderate Minor Minor   
AUX_Lane_Num     Moderate   
Day_of_Week Moderate       

Note: Major (p<0.001), Moderate (0.001≤p<0.01) , Minor (0.01≤p≤0.05) and Marginal (p>0.05) 
 

 

In the crash type models, the driver characteristics variables dominated the relative 

significance (see Table 5-59). In the angle, left turn and fixed object crash models driver 

behavior variables also had major relative significance. The ejected event was the most 

significant of the crash variables for fixed object, angle and left turn crashes. It was not 

significant for the rear-end crashes, while type of vehicle had major significance only for rear-
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end crashes. This suggests that vehicle protection capabilities are more important in rear-end 

crashes. In regards to road-related variables, speed limit and adt per lane were the only variables 

with major relative significance. The land use had moderate relative significance in the rear-end 

and fixed object crashes, while it was major for the angle and left turn crashes. Other road-

related variables had minor or moderate relative significance.  

5.4.4 Comparison of Models 

The major relative significance of road-related variables in the road entity models was 

surprising given the weakness of the road-related variables in the exploratory analysis. The 

stratified sampling technique for the final analysis and the addition of road characteristics 

variables are likely contributors to this improvement in the injury severity analysis. The relative 

significance of the variables for these models suggests the importance of access management 

techniques, basic road, roadside and pavement design parameters. Meanwhile, the crash type 

models had a significant weakening of road-related variables. These are most useful to determine 

indirect effects of road features on injury severity (such as unsignalized intersections in tangent 

sections for fixed object crashes and median type for left turn midblock crashes). Also these 

collision types’ models include a few driver, vehicle and crash effects not captured by the most 

general models. In general, all the models agreed on the signs of the coefficients and were this 

was not the case, there was a good empirical or intuitive reasoning behind these changes. 

Even with the presence of a plethora of driver-, vehicle- and crash-related variables in the 

models, an impressive number of roadway-related factors entered the driver injury models and 

remained significant. In most cases, the addition of certain roadway-related variables apart from 
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the stepwise model (such as traffic control and an interaction between skid resistance and land 

use) significantly improved the performance of the models. 

 

Table 5-60: Goodness of fit Measures for the Best Candidates of the Road Entity Models 

GOF Parameter OVERALL SEGMENT 
Number of Variables 38 32 
Degrees of freedom 68 60 
Marginally significant coefficients 5 10 
Non-significant coefficients 7 7 
Sample size 107449 69887 
Response severe/non-severe ratio 6.09% 6.74% 
AIC 41752.15 28556.32 
Hosmer-Lemeshow p-value 0.7626 0.9695 
c value (area under ROC curve) 0.774 0.788 
Percent Concordant 76.8 78.3 
Adjusted R-squared 0.1883 0.213 

 
 

 

In terms of statistical significance, almost all of the models had acceptable goodness of fit 

measures. In addition to the goodness of fit of the models, the model reliability is dependent on 

the goodness of fit, robustness of risk factor coefficients, and the consistency of the coefficients 

with previous empirical results and scientific principles. The multiple interactions of factors with 

intersections and the land use underscore the importance of these characteristics related to road 

design in the analysis of the multilane arterial safety performance. The goodness of fit measures 

for the road entity models (see Table 5-60) suggest a very good fit of the overall model and the 

segment models with 76.8 and 78.3 percent concordant, respectively. Due to the weaker 

intersection models, no combination of segment and intersection models could match the 

goodness of fit of the overall model. Considering the interpretative value of the models and the 

robustness and consistency of the coefficients, the overall model was the one that best captured 
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the effects affecting the driver injury severity in crashes on high-speed multilane arterials. This 

analysis suggests that the overall (joint analysis) is the most reliable of the road entity models. 

 

Table 5-61: Goodness of fit Measures for the Best Candidates of the Crash Type Models 

CRASH TYPE REAR-END REAR-END ANGLE LEFT TURN FIXED OBJECT 
MODEL SEGMENT PURE SEG UNSIG UNSIG SEGMENT 
Number of Variables 20 16 12 14 14 
Degrees of freedom 34 27 18 25 23 
Marginally significant 
coefficients 4 3 0 4 3 
Non-significant 
coefficients 7 6 2 4 4 
Sample size 20281 14580 6273 6289 4298 
Response severe/non-
severe ratio 3.54% 3.48% 9.58% 9.59% 14.61% 
AIC 5500.22 3891.13 3434.96 3433.34 3042.54 
Hosmer-Lemeshow p-
value 0.0995 0.3388 0.2267 0.7437 0.7322 
c value (area under 
ROC curve) 0.762 0.767 0.75 0.759 0.767 
Percent Concordant 75.3 75.8 74.6 75.5 76.5 
Adjusted R-squared 0.142 0.146 0.184 0.192 0.224 

 

 

The situation is more complex for the crash type models. Rear-end and fixed object 

crashes were expected to perform better in the pure segment models, while the intersection 

models were expected to be the best for angle and left turn crashes. The goodness of fit measures 

for the crash type models (see Table 5-61) showed some unexpected results. In the case of the 

rear-end crashes, the pure segment model performed better (adjusted R-squared=0.146) but 

limited the analysis by excluding crashes at unsignalized intersections which had a similar 

performance (adjusted R-squared=0.142). This limiting effect was seen in the coefficient 

robustness and thus both models are considered best candidates. The angle and left turn crash 

models suffered similar limitations, where the unsignalized intersection models performed better 

with higher adjusted R-squared values (0.184 and 0.192) than the rear-end models. In both cases 
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(left turn and angle crashes) the pure segment models performed better than the signalized 

intersection models. This suggests the importance of driveway (access points) left turn and angle 

crashes while it underscores the weakness of the signalized intersection models. Finally, for the 

fixed object crashes the segment model proved to be the best candidate without any major 

reservations due to their favorable goodness of fit statistics and its coefficient robustness. In fact 

the fixed object segment model performed better than any of the other crash type models 

(adjusted R-squared 0.224). This validates the research methodology of separating fixed object 

crashes for further analysis of driver injury severity for crashes on high-speed multilane roads. 

In general, the crash type analysis suggests a good fit of the models. The rear-end crashes 

had the weakest goodness of fit while the fixed object crashes had the best performance in the 

injury severity analysis. The left and angle crashes had similar performances, as expected. It is 

likely that better performance can be achieved if additional intersections information becomes 

available. The selection of best candidates does not render the other models useless. Additional 

information can be extracted and compared with future research from the 20 models developed 

for the crash types. The conclusions of this investigation were focused on the analysis of the best 

candidates. Considering the interpretative value of the models and the robustness and 

consistency of the coefficients, this investigation determined which candidates capture the most 

effects affecting the driver injury severity in crashes on high-speed multilane arterials. It was 

observed that the segment models for the rear-end and fixed object crashes as well as the 

unsignalized models for the angle and left turn crashes were the best performers (see Table 5-62, 

page 245). 

 

 

 



245 

Table 5-62: Summary of Best Candidates of the Crash Type Models 

Entities/ 
Signalized Unsignalized Segments plus 

Unsignalized 
Purely 

segment 
Overall 
Model Collision type 

Rear-end   X X  
Angle  X    

Left Turn  X    
Fixed Object   X   

 

 

The best candidates presented in this section might have been affected by a few factors 

not controlled in this investigation that should be pointed out. First, the weakness of the 

signalized intersection models due to the lack of intersection, signal timing/phasing and traffic 

data. Secondly, underlying differences correlated to land use were found that could cause some 

misspecification symptoms in these injury severity models. The implications of this situation are 

discussed in Section 5.6. Lastly, correlations among crashes and between closely spaced road 

features (especially intersections) were not accounted for by the statistical methods presented 

here. The vast majority of statistical information and conclusions presented are likely to hold true 

in future research judging from their agreement with past studies. However, additional 

investigation is also likely to uncover additional relationships 

This section compared the models by their statistical goodness of fit robustness and 

validity with previous research and scientific principles. In addition, it suggests a course of 

action for future research, as more information becomes available and additional statistical 

methods are brought to bear on the analysis of crashes on high-speed multilane roads.  By 

discussing some of the issues found during the course of this investigation, additional 

understanding of future avenues of research was achieved. 
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5.5 Model Considerations  

Stepwise selection of main effects and interactions using statistical significance can 

provide a valuable contribution to model identification, especially when there are many 

scientifically possible interaction effects (Hosmer and Lemeshow, 2000). The stepwise method 

of forward and backward elimination of variables in the models, although very useful and robust, 

is far from perfect and requires additional analysis to properly develop the models following 

certain guidelines. The stepwise method in SAS uses the score test for statistical significance of 

the models. In addition, the AIC measure (in lieu of the likelihood ratio measure) was used to 

determine if the variables added to the model significantly improved the model utility.  

A larger sample provides more opportunity for additional covariates to enter the model. 

However, these are not necessarily significant; thus careful process of cleaning out the 

problematic variables with large standard errors avoid problems from sparse cells, complete 

separation or collinearity. These issues were addressed after by analyzing the results of the 

stepwise regression outputs. In the case of complete (or quasi complete separation) SAS allow 

the iterations to continue and gives a warning, leaving the decisions of allowing variables in the 

model to the user. In the case of collinearity, the detection of large standard errors across one or 

more models justified the removal of some main effects or interactions (i.e. driver age and at-

fault) that showed empirical and intuitive evidence of collinearity. The elimination of such 

interactions was verified with the change in Likelihood Ratio Test (hierarchical analysis) of the 

previous model and the modified model (without the offending interactions). In addition, a 

significant change in the AIC value (more than 10, as discussed previously) was verified.  



247 

The selection of interactions in the model followed the hierarchically well-formulated 

(HWF) model principle. The HWF model includes all interaction terms as main effects in the 

model, regardless of their coefficient significance, and is used in most interaction analysis 

applications (Jaccard and Dodge, 2004). Only two-way interactions were considered in the 

model, as the interpretative ability for more than two-way interactions is too complex. HWF 

models avoid omitted variable bias by including all the interacting variables and its main effects. 

On the other hand, a few main effects with large (not unreasonably) standard errors were 

left in some models due to their importance as contributing factors or because the offending 

coefficient corresponds to the other category. Some of these problems are usually numerical in 

nature and not necessarily indicate a problem with the data. In a few cases, such as the traffic 

control variable of the overall model, important main effects dropped from the stepwise model 

after introducing additional variables. Since the 0.02 entry and stay variable requirement was 

introduced due to the size of the sample, the stay requirement was relaxed to 0.05 in this case to 

test whether this variable had a confounding effect or it was indeed a main effect. The resulting 

model did not introduce additional variables and the maximum change in odds ratios was 1.76%. 

Therefore, the traffic control variable was added to the model even though the standard error for 

one of its levels was large.  In such large models of a joint (grouped data) analysis is practically 

impossible to avoid a small degree of numerical problems without dropping important variables 

from a logistic model. A great degree of care was taken in the data preparation and sampling so 

that no additional data problems would compound the numerical challenges posed when 

developing these models. 

No major collinearity effects are suspected among the variables selected. In case of 

variables with unexpected coefficients, their distributions were analyzed to find whether the 
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coefficient values were affected by collinearity or confounding effects. Even if certain degree of 

collinearity exists, variables should not be removed from the models to avoid omitted variable 

bias. Meanwhile, combining different variables may cast doubts on the data preparation process 

or the theorized variable effects or processes (Menard, 2001).   

One strategy to evaluating the importance of predictors in logistic regression is to 

evaluate their odds ratios. Those predictors with the larger changes in outcome are considered 

the most important (Tabachnick and Fidell, 2001). This approach was followed in the discussion 

of the models, by comparing the magnitude of the effects. Another approach to evaluate the 

importance of predictors is the Type III tests in the SAS output, which are explained in Section 

5.4.3. 

Some important variables, such as land use became non-significant in presence of many 

other roadway-related variables and the interaction with skid resistance. These results suggest 

that the land use is represented by other road characteristics including access management. The 

land use was significant in every road entity model except in the pure segment. The strong 

correlation between the skid resistance numbers and the land use may be related to the operating 

speeds and design differences between urban and rural areas. The nature of these relationships 

deserves special attention and should be investigated further in the future. 
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5.6 Alternative Corridor Injury Severity Model by Land Use 

5.6.1 Misspecification Analysis 

There was some evidence of a misspecification problem with respect to the most 

important exposure variable (adt per lane) in crash analysis for the signalized intersection model. 

Such a development questions the validity of performing traditional road entity analysis for 

arterial corridors where spatial (and possibly temporal) correlations exists among the different 

road entities. The overall model for the arterial corridor provided the only choice that would 

include the exposure variable for all the crashes in the corridor. This situation was not totally 

unexpected since the exploratory models for signalized intersections did not perform well when 

the single and multiple crashes were combined, among other issues found during the exploratory 

analysis. It is worth nothing that in the models in previous studies (Wang et al., 2006; Abdel-Aty 

and Wang, 2006) the adt per Lane variable included traffic volumes from both the major and 

minor roads. The lack of minor road traffic volume data in the present investigation is not 

considered a factor to the misspecification because the adt per lane variable considers only the 

volume and lanes of the major road, thus the ratio is valid for the major component of the 

intersection. The coefficients values might be biased, but still efficient. In a study of crash 

severity levels at signalized intersections, Abdel-Aty and Keller (2005) found that the major road 

adt was significant in the model, as will be described. 

Another possible cause for the misspecification may be the lesser robustness of the 

logistic model vs. the family of generalized linear models. However, the results in the literature 

instead point to a possible high correlation between the land use and adt leading to possible 

model misspecifications for spatially correlated intersections. Obeng (2007) successfully entered 
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the adt per lane variable in a binomial logit model for 303 signalized intersections in the city of 

Greensboro NC. The injury severity analysis was successful when the log of the adt of the 

intersecting roads was entered into the model. All of the intersections were in an urban area. On 

the other hand, Krull (2000) used logit models to analyze injury severity of single vehicle crashes 

in rural and urban areas. The adt variable was excluded due to a high correlation (0.533) with the 

rural functional class. Finally, in a study of crash severity levels at signalized intersections, 

Abdel-Aty and Keller (2005) achieved gains in variable information in the intersection 

characteristics with a complete dataset model with major road number of lanes, left and right turn 

lanes, division on minor road, and adt on major road. In this study, ordered probit models similar 

in robustness to spatial correlation to the logistic models were used in the analysis. Data for the 

minor road (adt and number of lanes) were available and tested, but was not significant in the 

model. Multiple years (2000-2001) were used and different jurisdictions in rural and urban areas 

were selected with intersections of all speed limits and number of lanes.  

Various issues were found during the exploratory and final analyses that were related to 

the land use, including earlier issues with the skid resistance variable. Therefore, a final test of 

the combined (all) intersections and signalized intersection models was developed. Four models 

(two rural and two urban) were fit including the log_ADT_per_lane variable. The results 

indicated that for all intersections, the adt variable was significant for the rural area (p-

value=0.0454), while it was highly insignificant (p-value=0.6046) for the urban area. 

Meanwhile, for the signalized intersections, the adt per lane variable was marginally significant 

(p-value=0.1756) for the urban area and highly insignificant (p-value=0.7115) for the rural area. 

These results show enough evidence of misspecification for the intersection models. The 

resampling including involvements from drivers 1 and 2 and the careful selection without 
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substitution to avoid crash and road data repetition was successful. It has allowed discovery of 

the root causes of various issues found since the exploratory analysis. In addition, the correlation 

problems of some variables did not degraded the signalized intersection model performance due 

to its increased robustness. The implications for both the modeling strategy and the validity of 

the model results are discussed in Chapter 6. 

5.6.2 Corridor Injury Severity Model by Land Use 

The original research strategy did not include analysis of driver injury severity by land 

use. However, after examining the results of the different models, it was clear that alternative 

models analyzing all crashes by land use should be investigated. The goodness of fit of the 

models improved significantly (see Table 5-63, page 252). The AIC values improved 

dramatically, even better than the other two combinations by road entity models (all intersections 

and segment plus unsignalized) even with a larger sample and number of variables. In addition, 

the severity proportions have a larger difference than across the road entity models, which 

denotes a different injury severity distribution. It is clear from these data that the proposal for 

corridor level injury severity analysis should contemplate land use as unit of analysis among 

other possible options. In this investigation, it showed to be superior to the traditional road entity 

options. It also shows the model limitations, especially in the urban area crashes. In this section, 

the major differences between the three models will be briefly discussed. Details about the model 

coefficients and standard errors can be found in Appendix F. 
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Table 5-63: Goodness of fit Measures for the Final Analysis Injury Severity Models by Land Use 

GOF Parameter OVERALL ALL_RUR ALL_URB 
Number of Variables 38 31 33 
Degrees of freedom 68 57 61 
Marginally significant coefficients 5 8 6 
Non-significant coefficients 7 8 8 
Sample size 107449 50953 56496 
Response severe/non-severe ratio 6.09% 7.44% 4.88% 
AIC 41752.15 22609.71 19073.417 
Hosmer-Lemeshow p-value 0.7626 0.5906 0.3801 
c value (area under ROC curve) 0.774 0.780 0.763 
Percent Concordant 76.8 77.5 75.5 
Adjusted R-squared 0.1883 0.2055 0.1646 

 

 

With regards to the driver-related variables, the injury severity model by land use 

introduces some very useful information about driver characteristics (see Table 5-64, page 254). 

Driver age had the greatest variation for the negative effect on very old drivers in rural vs. urban 

areas (OR=1.822 vs. 1.394), which should have important consequences in safety guidelines for 

rural areas. Most safety literature regarding older drivers focused on intersections and lane 

guidance in urban areas. Gender (female drivers) denotes negative effects (OR=1.256) in rural 

areas, while in urban areas it is not significant. A similar situation happens with the interaction 

between female drivers and seat belt usage, which has a negative effect (OR=1.257) compared to 

male drivers using seat belts only in the rural area. The speeding and contributing cause 

(aggressive driving and driving under the influence) show increased negative effects in the rural 

area compared to the urban areas. The at-fault driver effect remains almost equal, it would be 

worthy of additional investigation how is it that driver behaviors have differences in their effects 

by land use yet the at fault driver effect remains similar in urban and rural areas. The residence 

code is only significant in urban areas, which is logical since non-residents are less likely to 
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travel in rural areas without touristic attractions. Physical defects do not follow the trend of the 

rest of the variables. It seems that drivers in urban areas have a disadvantage if they loose control 

compared to in rural areas, which might be due to the additional traffic (which makes a out of 

control crash more likely) and limited roadside clear zone in urban areas.  

In regards to crash types, the only negative effect that increases in rural areas is for the 

head-on collisions. The angle crashes have similar odds ratios, while for left turn crashes drivers 

traveling in urban areas tend to have higher severe injury odds ratio when compared to the rural 

areas. For sideswipe crashes, there is a positive benefit (OR=0.683) for crashes in rural areas and 

no significant effect in urban areas. Lastly, there is a larger negative effect for driver severe 

injury in fixed object crashes in urban areas (OR=2.374) when compared to rural areas 

(OR=1.531). Other crash variables have an increased effect in urban areas as well, such as off 

roadway (recall the fixed object crash at unsignalized intersections model), multivehicle crashes 

and multivehicle crashes at or near intersections. For the type of vehicle, the LTVs similar odds 

ratios in both land uses. Meanwhile, heavy trucks and especially motorcycles and bicycles have a 

negative effect in urban areas.  
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Table 5-64: Odds Ratios for Driver-, Vehicle- and Crash-related Variables in Final Analysis Models by Land 
Use 

Variable Level Rural Urban Overall 
Driver age 80-98 (vs. 25-64) 5 1.822 1.394 1.621 
Driver age 65-79 (vs. 25-64) 4 1.412 1.437 1.422 
Driver age 20-24 (vs. 25-64) 3 0.792 0.755 0.779 
Driver age 15-19 (vs. 25-64) 2 0.761 0.781 0.767 
Speeding (Unknown vs. not) 2 0.747* 1.037† 0.863† 
Speeding (Yes vs. Not) 1 0.450 0.335 0.409 
Gender (Female vs. Male)   1.256 1.190* 1.217 
Seat Belt Used (vs. no) 1 0.265 0.358 0.303 
Gender*Seat Belt used 1 1.257 1.216* 1.245 
Other Cont. Cause (vs. none) 4 1.641 1.544 1.605 
Aggressive Driving (vs. no improper) 3 1.796 1.655 1.748 
Alcohol/Drug use (vs. no improper act) 2 1.609 1.588 1.593 
At Fault driver (vs. not)   0.541 0.523 0.538 
FL Resident (vs. not)    1.307 1.175 
Physical Defects (vs. not)   1.454 1.643 1.535 
 Driver Ejected (Yes/Partial vs. No)   4.591 3.928 4.270 
Other collision type (vs. rear-end) 7 1.118* 1.064† 1.097 
Fixed Object (vs. rear-end) 6 1.531 2.374 1.810 
Sideswipe (vs. rear-end) 5 0.683 0.883† 0.779 
Left Turn (vs. rear-end) 4 2.034 2.540 2.242 
Angle (vs. rear-end) 3 1.789 1.801 1.784 
Head-On (vs. rear-end) 2 3.115 2.755 2.875 
Other vehicle type (vs. automobile) 5 0.743* 0.794† 0.756 
Bike/motorcycle (vs. automobile) 4 0.773 1.524 1.050† 
Trucks/buses (vs. automobile) 3 0.306 0.455 0.357 
Van/Light Truck/Pick up (vs. automobile) 2 0.823 0.821 0.820 
Point of Impact (driver side vs. not)   1.035† 1.170* 1.091† 
Point of impact*Speeding 2 1.247† 1.209† 1.240* 
Point of impact*Speeding 1 1.441 1.390 1.412 
Off Roadway (vs. not)   0.590 0.670 0.613 
Off Roadw*Speeding 2 0.872† 0.681 0.783* 
Off Roadw*Speeding 1 1.222* 1.513 1.289 
Off Roadw*Multivehicle 1 2.046 1.882 2.033 
Work Area (Entered vs. none) 3 0.747 0.997† 0.826* 
Work Area (Nearby vs. none) 2 0.741 0.772 0.750 
Multivehicle 1 0.475 0.519 0.469 
Intersection*Multivehicle 1 1.214 1.737 1.476 
Notes: * Effect is marginally significant (p<0.20); † Effect is not significant (p≥0.20) 
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In regards to the roadway-related variables, the major changes were noticed in the traffic 

control variable (stop vs. none), which is marginally significant for the rural area only (see Table 

5-65, page 257). The perceived benefits of access management in crash severity are not 

significant for the rural areas, even when testing the other class levels (2-4). Only class 5 is 

marginally significant. Additional research is required to better determine the relationships 

between access management and crash severity in rural corridors. One feature not available in 

the road inventory database is the driveway density, which becomes is presumably an 

unobserved factor. The type of shoulder suggests an advantage of unpaved shoulder over paved 

shoulders in rural areas and a disadvantage of curb shoulder over paved shoulders in urban areas. 

It seems that the unpaved shoulder in rural areas may be correlated to better clear zone, but 

additional research is required.  

In rural areas, conditions on roads with lanes between 10 and less than 11 ft wide seem to 

be more favorable in terms of injury severity than widths less than 10 ft or between 11 and 12 ft. 

Meanwhile in urban areas, sections lanes more than 12 ft wide have the most favorable 

conditions, according to this model. In rural areas narrow lanes would likely reduce operating 

speed (a major cause of severe crashes in rural areas) while in urban areas, increased heavy 

vehicle traffic would likely benefit from wider lanes. This information is much better than that of 

the overall model. Roadway curves are a great concern in urban areas, contrary to the traditional 

approach in two lane roads due to the fixed object crashes in unsignalized intersections on 

tangent road sections. On the other hand, the land use models suggest that wider sidewalks are 

more likely to benefit drivers in rural areas, while the effect is not significant in urban areas. This 

might partially be due to other road conditions (improvements) in sections were sidewalks are 
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built. Even the sidewalks and changed landscape might act as a traffic calming effect in these 

rural sections of multilane arterial corridors.  

The high-mast (LIGHTING) effect is only sign cant in urban areas. These high masts are 

usually placed at or near interchanges and the roadside conditions in urban areas vary in such a 

way that these poles may become a hazardous fixed object even when protected by guardrails. 

High masts are no longer used in many places; more information about the locations of these 

high-masts is needed to determine if these are already hazardous locations. However, these is a 

large benefit to have full lighting (OR=1.342) when compared to partial lighting (OR=3.280). 

For the conventional light poles, the odds ratios suggest that partial lighting in rural areas has a 

significant benefit, while full lighting in urban areas have a disadvantage. Additional research is 

needed to determine whether the closely spaced poles are the culprit in urban areas or if other 

effects (roadway curves with increased lighting or hazardous locations where additional 

luminaries are installed).The type of friction course is only significant in the urban area and type 

course 5 becomes insignificant. More information is needed about the proportions of these older 

friction courses (FC-2 is a dense graded, no longer effective) in the roadway inventory data. The 

relationships of skid resistance (as discussed previously) and day of week (weekend vs. 

weekday) are similar for both land uses. 

The driver injury severity analysis by land use presented here is proposed as a framework 

for future research involving severity analysis in high-speed multilane arterial corridors. 

Additional road and land use information would be needed, as well as more powerful analysis 

methods to fully exploit the potential of this manner of corridor level analysis. A modeling 

scheme by road entity and crash types is recommended to test the reliability of injury severity 

models by land use. 
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Table 5-65: Odds Ratios for Roadway-related Variables in Final Analysis Models by Land Use 

Variable Level Rural Urban Overall 
Speed limit (40-45 vs. other) 1 0.663 0.701 0.676 
ADT per Lane (thousands)   0.971 0.976 0.972 
Avg Truck Factor (percent)   1.010 1.013 1.011 
Traffic Signal (vs. other control) 3 1.127*  1.128 
Stop/Flashing (vs. other control) 2 0.968†  0.997† 
Non applicable (vs. class 2,3,4) 9 1.091* 0.991† 1.030† 
Access class 7 (vs. class 2,3,4) 7 1.116† 0.657 0.781 
Access class 6 (vs. class 2,3,4) 6 0.965† 0.785 0.833 
Access class 5 (vs. class 2,3,4) 5 0.914* 0.868 0.879 
Urban area (vs. Rural)   N/A N/A 0.879 
Curb Shoulder (vs. Paved) 3 0.980† 1.252 1.089 
Unpaved Shoulder (vs. Paved) 2 0.887 1.124* 0.967† 
Lane width                                             
(vs. 11 ft ≤ width ≤ 12 ft) 

Desc. 
   

Lane width <10 ft 4 0.886* 0.807 0.827 
10 ft ≤ lane width < 11 ft 3 0.673 0.865* 0.815 
Lane width > 12 ft 2 0.804 0.854 0.810 
Roadway Curve (vs. non curve)   1.196 1.536 1.306 
Sidewalk width ≥ 6 ft (vs. < 4 ft) 3 0.739  0.791 
4 ft ≤ Sidewalk < 6 ft (vs. < 4 ft) 2 0.797  0.851 
High Masts (full vs. none) Y  1.342 1.331 
High Masts (partial vs. none) P  3.280 3.506 
Full Non-High Mast (vs. none) Y 0.899† 1.304 1.129 
Partial Non-High Mast (vs. none) P 0.727 0.948† 0.821 
FC-3, FC-6, N/A (vs. FC-2) 9  0.803 0.975† 
Friction Course 5 (vs. FC-2) 5  0.805* 0.831 
Friction Course 4 (vs. FC-2) 4  0.784 0.918 
Friction Course 1 (vs. FC-2) 1  0.621 0.736 
Intersection    0.630 0.831* 
Intersection*Urban Area   N/A N/A 0.862 
Skid Resistance (1≤FN<35 vs. FN≥35)   1.178 1.126 1.198 
Urban Area*Skid Resistance   N/A N/A 0.919* 
Weekend (vs. Weekday)   0.902 0.909 0.906 
Notes: * Effect is marginally significant (p<0.20); † Effect is not significant (p≥0.20) 
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CHAPTER 6.  CONCLUSIONS 

 
In the preliminary analysis, the differences between intersection and non-intersection 

involvements were explored with cross tabulation tables. In the exploratory analysis, the 

involvements in high-speed multilane roads were analyzed using logistic regression models by 

road entities. A massive data preparation effort was undertaken to correct deficiencies found 

during the exploratory analysis. Preliminary analysis of the involvements from vehicle sections 1 

and 2 showed evidence of possible driver selection bias. To avoid bias, it was decided to choose 

a random sample of multivehicle crashes using the first two driver sections without substitution. 

Single vehicle crash driver involvements were added to this sample without repeating crash 

records. The final analysis consisted of six road entity models and twenty crash type models. 

Both the data preparation and sampling were successful in allowing a robust dataset. The overall 

model was the best candidate for the analysis of driver injury severity on high-speed multilane 

roads. Driver injury severity resulting from angle and left turn crashes were best modeled by 

separate unsignalized intersection crash analysis. Injury severity from rear-end and fixed object 

crashes was best modeled by combined analysis of pure segment and unsignalized intersection 

crashes. 

The most important contributing factors found in the overall analysis included driver-

related variables such as age, gender, seat belt use, at-fault driver, physical defects and speeding. 

Crash and vehicle-related contributing factors included driver ejection, collision type (harmful 

event), contributing cause, type of vehicle and off roadway crash. Multivehicle crashes and 

interactions with intersection and off road crashes were also significant. The most significant 

roadway-related variables included speed limit, adt per lane, access class, lane width, roadway 
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curve, sidewalk width, non-high mast lighting density, type of friction course and skid resistance. 

During model building some misspecification symptoms appeared due to major differences in 

road and crash types by land use. Two alternative models of crashes in urban and rural areas 

were successfully developed. The models by land use were substantially better than any other 

combination by road entity or the overall model, as indicated by their AIC values. Their 

coefficients were substantially robust and their values agreed with scientific or empirical 

principles. Injury severity models by land use should be further investigated following the road 

entity and crash type modeling scheme used in the present investigation. A framework for injury 

severity analysis and safety improvement guidelines based on these results is presented. 

 

6.1 Analysis Methodology Implications 

The main goal of this investigation was to find an appropriate method for driver injury 

severity analysis of crashes occurring on high-speed multilane arterials. There are broad 

implications for the evaluation of the safety performance of arterial corridors. Disaggregated 

analysis by road entity and crash types allowed a complete picture of the contributing factors 

affecting driver injury severity and comparison between different models. From this analysis, we 

can assess the model reliability and present recommendations for future research. 

First, the road entity models that had the best goodness of fit measures were observed for 

the overall, segment and pure segment models. These three models exhibited the best calibration, 

percent concordant and adjusted R-squared values. The combined models (segment and overall) 

provided the best set of contributing factors. In terms of coefficient robustness, the overall model 

had at least 84% of its variables with major or moderate relative importance. The number of non-
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significant coefficients also compared favorably to the other road entity models. Additional 

intersection data (movement counts, signal timing, geometry) might improve the models related 

to intersections. However, the overall model included the variables related to intersections and 

interactions with intersection presence, which represented most intersection effects, with the 

notable exception of red light running. 

Secondly, the models by crash type had more complex relationships. For the rear-end 

crashes, the segment and pure segment models had a better fit than the other models. The 

segment model included all variables present in the pure segment model and the overall model 

except a few variables with minor or moderate relative importance. The pure segment model on 

the other hand did not have the land use variable, which has major significance. Modeling of 

rear-end crashes with a segment model is expected as most segment crashes are rear-end. The 

major disadvantages were the absence of the lane width (which has moderate relative 

significance) variable and the low calibration power as shown by the Hosmer Lemeshow p-

value. For the angle crash models, the unsignalized intersection model had the best fit due to the 

very low calibration power of the segment and overall models. The major disadvantage of the 

unsignalized intersection model for angle crashes was the absence of the access class and vision 

obstruction variables, which were significant for signalized intersections and pure segments, 

respectively. For modeling driver injury severity in left turn crashes, the unsignalized 

intersection model was the best fit. However, in this case all models had excellent calibration. 

The major disadvantage of this model was the absence of the access class variable (moderate 

relative significance).  For fixed object crashes, the segment model was the best fit without major 

disadvantages. The combination of pure segment and unsignalized intersection fixed object 

crashes resulted in excellent calibration. 
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In conclusion, the overall model exhibited better model reliability when considering 

goodness of fit and coefficient robustness. For rear-end crashes, the segment model was more 

reliable, with a few reservations. In the case of angle crashes and left turn crashes, the 

unsignalized intersection models demonstrated better performance, with the exception of the 

access class variable, which was significant for left turn and angle crashes in signalized 

intersections. For the fixed object crashes, the best injury severity analysis modeling resulted 

from the segment model without reservations. In general, models with higher proportions of 

severe crashes had a better reliability. The overall model captures almost all of the significant 

effects, while the angle, left turn and fixed object crash models capture a few specific effects (i.e. 

fixed object crashes in unsignalized intersections on road curves) important to the safety 

performance of high-speed multilane arterials. 

 

6.2 Significant Factors Conclusions 

This severity analysis has shown many characteristics that distinguish the contributing 

factors to driver injury severity in high-speed multilane arterials to those for crashes on other 

road types. Next, some additional implications of some of the findings are discussed. A group of 

findings are only preliminary, as they require additional research to prove the nature of these 

relationships. Most of the discussion will focus on roadway-related features and their effects on 

driver injury severity. 

In locations with full lighting (higher density) there was a negative effect on driver injury 

severity. This is probably affected by the selectivity of higher densities of poles near 

intersections. Further research is needed to prove whether clustering among hazardous locations 
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or whether there is a more systematic symptom. Previous research discussed previously 

identified driver’s overconfident behavior offsetting safety benefits of certain design features. 

The key advantages of the overall model to analyze the driver injury severity resulting from 

crash involvements on high-speed multilane arterial corridors are realized in the roadway-related 

variables.  

The off-road crash interactions emphasize the role of speeding as a safety hazard in high-

speed multilane roads and points to a possible relation between driveway crashes (multivehicle 

and off road) and increased injury severity. The current literature on the relationships between 

driveways and crash severity on multilane roads is limited. Hauer (2004) found that commercial 

driveways contributed to increased injury in on the road crashes in four lane undivided 

(including TWLT) urban segments. No significant relation between driveways and off-road 

crashes was found in those segments. A recent study by Lui et al. (2008) showed that the 

presence of U-turn bays in between signalized intersections and increased separation distances 

between driveways and U-turn locations in divided urban and suburban roads reduced total and 

angle crashes. However, no literature was found that addressed the relation between driveways 

(or unsignalized intersections) and safety performance of rural multilane segments. The 

additional findings about the interactions of road safety characteristics (such as skid resistance) 

and rural areas indicate that high-speed multilane roads in rural areas should be further 

investigated separated from the urban sections due to their major differences demonstrated in this 

investigation.  

The lowest odds ratios were for the lanes between 10 and less than11 ft in rural areas and 

more than 12 ft in urban areas. This difference might be attributed to the wide lanes for bicyclists 

in urban areas. A recent observational study by Hunter and Feaganes (2004) recommended 
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FDOT to convert 14 ft wide curb lane conversions to bicycle lanes 3 ft wide and 11 ft vehicular 

lanes. The sites selected for the study were in multilane facilities with curb and gutter (except for 

one site) and speed limits between 40 and 45 mph. Their conclusions were based on rates of 

vehicle encroachment on the bicyclists shared path vs. the designated 3 ft lane. No additional 

literature which included crash analysis of motor vehicle traffic was readily available. This and 

other bicycling countermeasures may have adverse effects on severity of crashes on multilane 

arterial corridors, as suggested by the present investigation. It is imperative that additional crash 

analysis is performed in these sites to evaluate the safety effects of these lane conversions. 

The shoulder width and median width did not enter the overall models. Even in the rural 

area model, only shoulder and median widths were marginally significant, while in the urban 

area only median type (raised vs. paved) was only marginally significant. Also, the results from 

this investigation also placed an important role on median design and unsignalized intersection 

characteristics. These results agree with the conclusions of Gattis et al. (2005) and Eisele and 

Frawley (2005), as discussed previously. Traditionally auxiliary left and right turn lanes on the 

major road have been found to provide increased safety benefits.  However, in multilane arterial 

corridors additional conflicts with through movement seem to have the most significant effect on 

severity. Among those are rear-end crashes on a median opening (encroachment of through 

lane).  This suggests that access management and intersection design have a more important 

effect on high-speed multilane arterials than other road elements that have traditionally been 

targeted for safety improvements. The safety performance of high-speed multilane arterials is 

dependent in a greater degree on traffic (turn movements and crossings) control and access point 

spacing to reduce weaving. 
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The presence of multiple speeding interactions with other crash-related variables 

emphasizes the role of speeding as a safety hazard in high-speed multilane roads. These types of 

roads have a degree of complexity, lack of uniformity (from one land use to the next) and 

hazardous crossing points that give much less room for error or unsafe behavior for drivers, 

when compared with limited access roads. Yet, due to their nature and enforcement funding 

structure (NHSTA funding) which favors freeways, traffic enforcement is notably less than in 

other types of roads. There are signs of recent changes in the allocations for traffic enforcement. 

Number of approaches at intersections was tested in the exploratory and final models, but 

was not found significant in any model. The variable did not enter the final models, a significant 

finding. The implications that the numbers of approaches at high-speed multilane road 

intersections are not significant in regards to the driver injury severity include design 

considerations. First, the intersections in these types of roads with more than four approaches 

were rare. Second, other variables, such as major road lane width and adt per lane, which relate 

to the intersection size and operation, were found significant in the models. This suggests that 

certain intersection design features act as significant factors of driver injury severity, while the 

more general characteristic of number of approaches, which may increase the number of crashes, 

does not have a significant effect. Recall that unsignalized intersections, which can be considered 

as three leg in a divided road, were found to have negative effects due to other design 

considerations, such as roadway curve and major road lane width (for left turns). 

One of the most important road design parameters is the speed. Speed limits generally 

reflect a decrease of 5 to 10 mph below the speed limit. However, there are many changes on the 

roads that degrade the design speed. The development of roads in rural areas does not necessarily 
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follow the pace of business development along the arterial corridors. Access management is 

currently included in the retrofit plans for high-speed multilane arterials. 

An interaction variable of speeding and point of impact was tested in the models to prove 

whether this drivers speeding would be usually at an advantage when hitting other vehicles. 

Since the speeding indicator is computed using the estimated speed reported by the police officer 

only for certain types of crashes, there are more missing data than for any other variable. It is 

more likely that the police officer reports an estimated speed for a severe crash requiring a 

thorough investigation. Thus, it was deemed pertinent to include this variable (with one level 

labeled unknown) for its perceived significance in severe crash outcomes. The point of impact 

and speeding interaction was significant in both the rural and urban models. There was a 

negative effect, likely due to angle crashes with impacts on the speeding driver’s side. Speeding 

also played an interaction role with off roadway crashes, which tend to be severe.  

There is a tendency of increased total and severe injury involvements at locations with 

older friction courses, as shown in both Figure 5-6, page 186, and Figure 5-7, page 187. 

Decreasing skid resistances of older friction courses (polishing effects) is an important concern 

for skid hazard prevention programs. However, roads under wet pavement hazards are 

considered when at least 25% of the crashes are related to wet pavement. If there is a systematic 

decrease in friction resistance on high-speed multilane corridors with older friction courses, it is 

not necessarily captured at the district level. Additional injury severity models and other 

systematic crash analysis should describe these tendencies in more detail. 

In multilane arterial corridors, the traffic conflicts seem to have an important effect on the 

safety performance. In a given roadway curve, the arc length between two points is longer than 

its subtended length. If the access class standards do not change by horizontal degree of 
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curvature, the density of access points (in two-dimensional space) and traffic conflicts tends to 

increase on curves. An example of this situation is shown in Figure 6-1. Note the closely spaced 

turn bays on the tangent. In addition to vehicular control, visual distraction (signs, among others) 

and visibility obstructions (i.e. shrubbery) increase the level of driver discomfort in urban curves. 

Additional traffic conflicts in closely spaced access points make the curved roadway sections in 

multilane roads difficult to negotiate, especially lane changes to reach left or U-turn bays from a 

driveway. 

 

 
Figure 6-1: Curved Section of SR-423 (Lee Road) Next to the I-4 Exit in Orlando  (Source: Microsoft Virtual 
Earth) 
 

 

6.3 Analysis Success and Limitations 

This study attempts to address a recent paradigm shift in arterial crash analysis: a joint 

analysis of different road entities with the corridor as unit of analysis. The methods tested 

included involvements severity analysis models of all the crashes in the corridor, by road entity 

and by crash types. The logistic regression analysis proved to be an effective, flexible method 

robust enough for the goals of this research. The results showed the potential of injury severity 
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analysis of all crashes in arterial corridors, while they showed a flaw in the analysis method. The 

injury severity had a direct correlation with the land use, which was also a covariate in the 

model. This caused some issues with important variables which were addressed by modifying the 

all involvement injury severity analysis to analysis by land use. The results were successfully 

applied to the multilane arterial driver, vehicle and road conditions and compared with the 

overall model, which could not discriminate the effect of changing road conditions on driver 

injury severity. 

An argument can be made that by analyzing the different effects of land use separately, 

the traditional analysis by road entity can be effectively complemented by overall crash models 

when analyzing multilane arterial corridors. Additional injury severity analysis of models by 

land use, crash types and road entity is recommended to prove whether this is true. A new 

proposed analysis of a set of road entities with a common land use replaces the previous notion 

that points of traffic conflict and road segments are to be treated as isolated entities in crash 

analysis. This analysis method may still be true for high-speed two-lane roads, which tend to be 

in rural areas with intersections not as closely spaced, but it has not been very effective in 

analyzing high-speed multilane arterials, as indicated in this investigation. Recent literature has 

focused on this area and promises to change the engineering focus in treating arterial corridors 

nationwide. 

This analysis has some limitations that need to be accounted for in the results. This 

analysis only addressed driver injury severity, while most useful, does not include other effects 

on occupants and/or pedestrians. There is another limitation in clustering the injury severity data 

into two categories, which was the goal of this research. These results may be extended by 

accounting for the correlations among different driver injury severity levels.  Also, accounting 
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for correlations between involvements in the same crash will allow finding additional 

information from the interactions between vehicles, which is expected to improve the analysis of 

multivehicle crashes, such as angle and left turn. 

A high order of multicollinearity is to be expected when a complete set of independent 

variables is used in a full-model regression analysis. Stepwise regression analysis does not adjust 

adequately for presence of collinearity (i.e., nonorthogonality) among the set of predictors and 

may generate inefficient or incorrectly signed parameter estimates. This limitation was handled 

by using stepwise regression as an exploratory tool and relying on empirical evidence to add (or 

remove) important variables and testing the model specification using the Hosmer-Lemeshow 

test. Additional variable interactions were tested in order to improve the interpretative power of 

the models. Most issues were dealt with in a timely way by applying the basic principles of 

categorical data analysis.  

One recent injury severity study separated 14 types of crashes with different 

characteristics to alleviate and minimize biases inherent in a joint model (Ulfarsson and 

Mannering, 2004). In a recent study of the effects of rural highway median treatments and access 

(Gattis et al, 2005) the findings suggested that additional study should be performed to examine 

any correlations between median type and land use. Another study (Eisele, 2005) suggested 

additional study of median safety impacts over a broad range of geometric conditions in long 

corridors. The investigation presented here attempts to contribute in filling the gap in the general 

knowledge of the important safety effects (on driver injury severity) and suggest an effective 

way of capturing those effects in an arterial corridor. This study could not account for the spatial 

correlation among road features within an arterial corridor due to the limitations of the statistical 

method used for analysis. However, the amount of analysis and model specifications tested and 
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satisfactory results for a systematic injury severity analysis of high-speed multilane arterial 

corridors should serve as the basis many avenues of future research. 

 

6.4 Crash Data Limitations 

The quality and stability of the injury severity analysis models are dependent on the 

quality of the dataset available. The data preparation efforts were successful in providing a series 

of models that were not possible in the exploratory analysis. Sacommano, et al (1994) and others 

have arrived to the same conclusions. A major limitation in all crash analyses are the missing 

data, which tend to be from minor crashes. There was a systematic effort in the investigation to 

maintain the severe crash proportions as close as possible to the original population to avoid 

possible bias in the models. Missing information appear to be random result of data entry error or 

incomplete reporting and not systematic. About 45% of the data were excluded due to missing 

information. Appropriate chi-square tests were computed for the excluded data in the final 

sample with no significant associations between excluded data and the injury severity variable.  

Another possible source of error for the intersection models is the 250 ft influence area 

used for all intersections in Florida. There is a selectivity bias due to smaller intersections being 

assigned crashes occurring farther than their influence data and larger intersections without all 

the crashes that occurred within their influence area, as discussed in Wang et al (2008). This 

situation is not a concern in the final models by land use.  

An additional 16% of the final sample (20,897 crashes/involvements) was lost due to a 

design feature of the RCI data that were merged. The roads use a linear referencing systems 

(LRS), which links adjacent sections with the same milepost (i.e. the end point of one section 
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equals the begin points of the next section). At some intersections, the situation is more 

complicated, up to four sections might meet at one point. For large amounts of crash data there is 

no practical way to determine which side of the section border the crash belongs to. There was 

no evidence of systematic data loss. Improvements in crash location using coordinates and GIS 

might alleviate this problem. 

 

6.5 Suggested Safety Guideline Framework 

The result of this investigation suggests that a series of coordinated safety guidelines be 

proposed to the FDOT to implement in two simultaneous stages. One stage would impact road 

construction and retrofits. Meanwhile, the second stage will impact access management and 

maintenance activities on high-speed multilane arterial corridors. Today, there exist many 

guidelines that might conflict or not have enough information to allow the stakeholders make 

coordinated improvements at the state level. Once uniformity is achieved at the state level, other 

jurisdictions are likely to follow these guidelines. One of the main concerns that this analysis 

raised was the unsignalized intersections (not driveways) in urban arterials. Roadside and 

visibility issues have negative effects on the drivers’ injury severity. Not enough current 

information is available in the safety literature focusing on these road features. Recent efforts to 

improve new intersection design are likely to have a positive impact. However, modifying 

existing designs system wide will likely have the greatest effect on the safety performance of the 

arterial corridors. A few low cost improvement examples are discussed next.  

Unsignalized intersections on high-speed multilane corridors are sometimes difficult to 

identify when traveling on the major road. On the other hand, heavy traffic volumes make these 
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intersections difficult to cross, even with the presence of a median. Some improvements in 

signage letter size and lane assignment signing at large intersections have been slower in state 

roads compared to county roads in the Central Florida area. In some other parts of the state 

(especially South Florida) this situation is a little different. Low-cost countermeasures, such as 

signing, when applied uniformly have a high impact reducing traffic flow disruptions and 

improving safety. Additional access management measures are needed to improve the safety 

performance of the high-speed multilane roads with the worst safety records (i.e. SR-50 in 

Central Florida). These will also improve sight distances for older drivers at intersections. In 

addition, clustering of closely spaced unsignalized intersections increase traffic conflicts and 

decrease gap availability for downstream unsignalized intersections, which is a great problem for 

older drivers. It seems that the permitting department plays a crucial role and there is a concern 

about recent access construction on state roads that do not comply with the guidelines set forth in 

the Median Manual.   

In addition, traffic signal coordination for the corridors will not only improve travel 

times, but may reduce speeding and other forms of aggressive driving. If the traffic signal 

optimization balances well the needs of major and minor roads, driver frustration would be 

reduced and better gaps would be available for the unsignalized intersections in the corridor. 

Some of these benefits have been measured, some are difficult to measure. Better signal 

coordination should reduce speeding and red light running. The red light running drivers are 

143% more likely to sustain sever injury, while speeding drivers are less likely (40%) to sustain 

severe injury when compared to non-speeders. However, these are individual factors (all else 

held constant) and their combination will likely yield a negative result for those drivers hit by 

speeders. The combination of contributing factors in the models developed in this investigation 
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suggests that an integrated focus on the safety performance of arterial corridors yields reductions 

in driver injury severity. Likewise, an integrated approach to a combination of engineering 

countermeasures on these corridors is expected to yield the best safety improvement results. 

Lane width might be increased in urban areas by reducing the shoulder width, were 

practical. In this investigation, shoulder width was only significant for the angle crash model. 

The difference in odds ratio between shoulder widths of 6 ft and 10 ft is very small compared to 

the system wide benefits of wider lanes in urban areas, especially those with higher truck traffic 

volumes. On the other hand, reducing lane widths in rural areas to 11 ft is suggested by the injury 

severity models to have a positive benefit. Additional research is needed to further prove these 

relationships before a testing program that should confirm the research findings 

Drivers of vans, light trucks (LTV’s) and pickups involved in crashes at high-speed 

multilane roads are 82% as likely as passenger car drivers to sustain severe injuries. Additional 

strategies to improve direction finding, lane assignment and traffic signal visibility to passenger 

cars driving behind LTV’s may improve their drivers’ safety performance. This will also help 

older drivers as well. Landscaping clear zone on arterial corridors will improve visibility, 

especially in unsignalized intersections on tangent road sections. 

These examples serve to illustrate a proposed framework of coordinated efforts system 

wide to continuously improve the arterial corridors. Some of these examples use proven 

strategies to alleviate negative effects found in research. Others will require additional research 

and testing before implementation. Situations such as the bicycle lane assignment discussed 

previously must be further evaluated to make sure that an intended benefit for one group of road 

users does not negatively affect others. Evaluation must be timely to prevent new patterns of 

safety risk to rise. 
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6.6 Implications of Analysis Methodology and Results on Road Design and Treatments 

This investigation followed the traditional injury severity analysis approach and 

compared its results to analysis by crash types and joint models combining crash involvements 

occurring at different road entities. It has been pointed out in the literature that the conditions in 

arterial corridors are interrelated to the land development and traffic conditions differently than 

for other types of roads, such as freeways. This research has demonstrated some benefits in the 

joint analysis of crashes at different locations, such as intersections and road segments. This does 

not negate the differences in crash patterns at intersections and road segments, as shown in the 

crash type models. Rather, it serves as proof of a relationship between the different crash 

locations. The exact nature of this relationship will surely be the topic of future research, but 

certain very useful contributing factors have surfaced in the course of this investigation can be 

used to point to some implications on the safety effects of design and operation parameters on 

arterial corridors. 

Some of the most important implications of the contributing factors found in the models 

are related to driver, crash and vehicle factors. These include the driver age, gender, seatbelt use, 

ejection, speeding, drunk driving, aggressive driving and type of vehicle. Their respective safety 

effects (on driver injury severity) and implications are summarized in Table 6-1, page 274. One 

major implication of the injury severity analysis was that the joint analysis of crashes did not 

degrade the significance of driver, crash or vehicle factors. Another finding was the feasibility of 

combining different factors with roadway characteristics to improve the injury severity analysis. 

Some of the implications summarized point to enforcement and education strategies, as well as 

road design. Additional research is needed to pinpoint the nature of these strategies. 
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Table 6-1: Safety Effects and Implications of the Most Important Driver, Crash and Vehicle Contributing 
Factors 

Contributing 
Factor Safety Effects Implications 

Driver Age 
Groups Young Drivers- positive effects Further research in relation between driving 

patterns and crash involvements 

Driver Age 
Groups 

Older drivers- negative effects, 
larger in rural areas (land use 
model) 

Challenging road environment- design strategies 
for older drivers should be continued, especially 
in rural areas 

Driver Ejection Large negative effects on 
injury severity Emphasis on short trip seat belt use 

Gender Females have large negative 
effects, even with seat belts 

Further research in relation of type of vehicle 
used, driving patterns and crash involvements 

Seatbelt use Best positive effect Enforcement strategies for arterial corridors 

Speeding Positive effects Further research into crash sequence, 
enforcement strategies. 

Drunk driving  Negative effects Enforcement strategies for arterial corridors 
Aggressive 
driving 

Greater negative effects than 
drunk driving 

Enforcement strategies for arterial corridors, 
including time of day 

Type of vehicle 
Van, LTV's and pickups with 
positive effects compared to 
passenger cars 

Road design characteristics to improve 
passenger car visibility of signals and lane 
assignments. Future research of driver age and 
gender relationships with type of vehicle used. 

 

 

Similarities regarding injury severity may be more closely related to crash mechanism 

and land use than to the location of the crash for arterial corridors. This does not necessarily 

contradicts the differences between road locations, but points to some additional correlations 

between closely spaced access points, major intersections, traffic congestion and driveway 

interactions by land use.  The intersection crash classification used in the crash database may 

also have an effect on these systematic results, as suggested by Wang et al. (2008). This 

investigation has provided a glimpse of the systematic trends in regards to injury severity on 

arterial corridors. The performance of the joint models pointed to some contributing factors that 

only showed effects on intersections or segment models, but also significance in the overall 

model. These factors included adt per lane, access class, lane width, lighting density and skid 

resistance number. Their safety effects and broader implications are in Table 6-2, page 275. 
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Table 6-2: Safety Effects and Implications of the Most Important Roadway-related Contributing Factors 

Contributing 
Factor Safety Effects Implications 

Speed limit 
Positive effects of arterials 
with lower speed limits (40-
45 mph) 

Possible drawbacks of higher speed arterials. 
Future research on relationships between 
speed limits 40-45, driveway density and land 
use. 

adt per lane 
Positive effects of increased 
average traffic density, not 
significant at signalized int 

Traffic management strategies should take into 
account effects on operating speeds to avoid 
negative safety effects.  

Access Class 
Positive effects of classes 5-
7 (vs. 2-4) in signal, overall, 
urban area models 

Benefits of access management strategies in 
urban areas (preliminary result). Future 
research need to stratify class 5 by speed limit. 

Land Use Positive effects of urban 
areas 

Rural area road design characteristics future 
research. Driveway research limited to urban 
areas.  

Lane width 

Positive effect of wide (>12 
ft) lanes in urban, narrow 
(<11 ft) in rural areas. Entity 
models showed positive 
effects at intersections. 

Design of multilane arterial lane widths varying 
according to land use. Bicycle lane separation 
may have negative effects on motor vehicle 
users. Positive effects at intersections may 
point to limited application to intersection 
influence area. Further research is needed. 

Sidewalk width 
Moderate to major positive 
effects on intersections and 
rural area model 

Further proof of safety benefits of pedestrian 
facilities to drivers. Rural area finding is 
preliminary, further research is needed. 

Non-high mast 
Lighting density 

Partial non-high mast 
density had positive effects 
in segments, rural areas and 
rear-end crashes. 

Points to the possible design treatments in rural 
areas that may affect the land use effect 
discussed earlier. Crash type models point to 
systematic countermeasure. 

High mast 
Lighting density 

Negative effects of total or 
partial high mast density 

Investigation into high-mast lighting locations 
(i.e. interchanges) to recommend systematic 
treatments and/or design changes 

Type Friction 
Course 

Positive effects of newer 
friction courses in most 
models and urban area 

Points to possible systematic benefits of 
resurfacing in arterial corridors. Old friction 
courses become ineffective. Urban area tends 
to support larger traffic and pavement wear. 

Skid Resistance 
Negative effects when 
comparing current cut-off 
value of 35. Positive urban 
area effect. 

Preliminary analysis indicated a positive effect 
of skid numbers >44 in urban areas, but 
negative effects in rural areas. Earlier studies 
point to driver behavior offset (Elvik and 
Greibe, 2005) 

Median Not significant Median size or type not as important in design 
as spacing, further research is required 

Number of 
approaches Not significant Intersection size rather than the number of 

approaches seems to have safety effects 
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With the information provided by these models (refer to Table 6-2, page 275), there is 

enough evidence to focus additional investigation and evaluation of certain locations, such as 

those with high-mast lighting. On the other hand, some of the contributing factors point to 

systemic effects that can be used in improving road design given results from additional 

research. In addition, some present strategies, such as the bicycle lane separation may have a 

negative effect in urban areas, were the results from this investigation suggest that wider lanes 

are desirable. Due to the macro approach of this research, the exact nature of some road related-

effects is not completely described in the models. However, the potential of the joint analysis for 

future research dealing with arterial corridors was demonstrated. Also, there were indications 

that this analysis can be improved if it is stratified by land use. There are some caveats to this 

approach that can be better handled if a comprehensive analysis with models by crash type and 

road entity are compared. 

While this investigation attempted a large scale approach to the analysis of arterial 

corridors, some of the lessons learned here could be applied to the analysis of individual arterial 

corridors. The application of systematic countermeasures based on large scale could be useful 

when analyzing individual corridors. This strategy has been applied in jurisdictions with safe 

corridor programs, such as Virginia. Their approach includes a regional analysis determined by 

crash trends, socioeconomic and geographical characteristics. Future large scale analysis with a 

representative sample of arterial corridors can provide results that confirm or extend the ones 

obtained in this investigation. 
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6.7 Recommendations for Further Research 

The results of this investigation are useful, but limited to the injury severity analysis for 

one person involved in each crash. An extension of this research using statistical methods that 

account for the correlation between involvements in the same crash should be a research priority. 

These models will take full advantage of the wide data format that could not be utilized in the 

final analysis. The use of the wide format was nonetheless very useful and is recommended in 

future research work that includes severity analysis. In addition, separate analysis of single and 

multiple vehicle crash involvements with their different crash mechanisms and their relationships 

with road characteristics is recommended.  

Additional research into the relationships of crashes and road features in urban and rural 

areas is needed. Additional comparison between models by land use, road entity and crash types 

would confirm whether the land use approach is best for all injury severity analyses of high-

speed multilane arterials. Crashes in rural and urban areas are affected by some common road 

characteristics that follows design standards or guidelines, for example geometric (lane width) 

and pavement (friction course). The internal correlations between these characteristics and the 

driver injury severity outcomes are of interest. Also, to review and to possibly use additional data 

from the most recent years (2005-2007) to evaluate how some road characteristics, such as 

friction courses, have changed over time in sufficient quantities for performing additional 

systematic crash frequency and severity analysis; this may allow investigating the safety 

effectiveness of newer friction course mixes not widely available in 2002-2004 and comparing 

these results to earlier analysis with older crash data.  
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Another area of interest in injury severity analysis is the relationship between the ejection 

event and seat belt use. Even tough this event is technically a post-crash event; its inclusion in 

the model might have measured some unobserved factors.  In addition, recent studies have 

pursued the use of statistical method that account for the over reporting of seat belt usage in 

minor crashes. 

Preliminary analysis suggested that there are no significant differences between the 

severe crashes in state vs. non-state roads for the high-speed multilane arterials. Although any 

arterial corridor, even at the local level will likely comply with the minimum standards and 

guidelines, research needs to address other possibilities. Differences between state and non-state 

roads could include access management strategies, lack of uniform guidelines within a county 

(by cities) or region (by counties), land uses, law enforcement, and travel choices. There are 

efforts underway to include more local (county and city) road and crash data in an integrated 

crash database. This will allow further research including non-state roads in the future.  
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APPENDIX A:  INTERSECTIONS WITH TOTAL AND SEVERE CRASH 
COUNTS FOR THE YEAR 2004 
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Distribution of Total and Severe Crash Counts  (All Intersections in Multilane Arterials) 

Distribution of Total Crashes At (or Near) All Intersections in Multilane Arterials 
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Distribution of Total Crash Counts  (Signalized Intersections in Rural and Urban Multilane Arterials) 

Total Crashes At (or Near) Signalized Rural Intersections in Multilane Arterials 
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Distribution of Total Crash Counts  (Unsignalized Intersections in Rural and Urban Multilane Arterials) 

Total Crashes At (or Near) Unsignalized Rural Intersections in Multilane Arterials 
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Distribution of Severe Crash Counts  (Signalized Intersections in Rural and Urban Multilane Arterials) 

Severe Crashes At (or Near) Signalized Rural Intersections in Multilane Arterials 

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
0

100

200

300

400

500

600

C
o
u
n
t

Frequency Count

 
Severe Crashes At (or Near) Signalized Urban Intersections in Multilane Arterials 

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
0

100

200

300

400

500

600

700

800

C
o
u
n
t

Frequency Count

 



284 

Distribution of Severe Crash Counts  (Unsignalized Intersections in Rural and Urban Multilane Arterials) 

Severe Crashes At (or Near) Unsignalized Rural Intersections in Multilane Arterials 
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APPENDIX B:  CATEGORICAL DATA’S FINAL ANALYSIS 
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Categorical Data Analysis  (All High-speed Multilane Involvements Records; N=215,898) 

  Driver 1 Driver 2 

Variable 
DF 

PCHI p-value CONTGY CRAM  V p-value CONTGY CRAM  V 
Year 2 0.0647 0.0054 0.0054 0.0171 0.0065 0.0065 
Driver_Ageg_Group1 4 <0.0001 0.0411 0.0412 <0.0001 0.0174 0.0174 
nSex1 2 <0.0001 0.0232 0.0232 <0.0001 0.0185 0.0185 
nFirst_Safety_Equipment1 7 <0.0001 0.2035 0.2079 <0.0001 0.1639 0.1661 
Speeding1  2 <0.0001 0.0959 0.0963 <0.0001 0.0674 0.0676 
nFirst_Contributing_Cause1 25 <0.0001 0.1143 0.1150 <0.0001 0.0578 0.0579 
nVehicle_Fault_Code1 1 <0.0001 0.0739 0.0741 <0.0001 0.0198 0.0198 
Red_light_running1 1 <0.0001 0.0215 0.0215 <0.0001 0.0098 0.0098 
nResidence_Code1 5 <0.0001 0.0294 0.0294 <0.0001 0.0176 0.0176 
nPhysical_Defects1 7 <0.0001 0.0560 0.0561 <0.0001 0.0167 0.0167 
nEjected1 3 <0.0001 0.2287 0.2349 <0.0001 0.1831 0.1862 
nRecommend_Re_Exam1 2 <0.0001 0.0228 0.0228 0.5028 0.0027 0.0027 
nRace1 4 <0.0001 0.0295 0.0295 0.0006 0.0101 0.0101 
nFirst_Harmful_Event1 39 <0.0001 0.1719 0.1745 <0.0001 0.1034 0.1039 
nOn_Off_Roadway 1 <0.0001 0.0796 0.0798 0.0004 0.0081 -0.0081 
nPoint_of_Impact1 21 <0.0001 0.1490 0.1507 <0.0001 0.0997 0.1002 
nVehicle_Movement1 13 <0.0001 0.0687 0.0689 <0.0001 0.0621 0.0622 
nType_of_Vehicle1 15 <0.0001 0.1811 0.1842 <0.0001 0.1794 0.1824 
nVehicle_Use1 16 <0.0001 0.0407 0.0408 <0.0001 0.0331 0.0331 
CRASH_LANE 7 <0.0001 0.0650 0.0652 <0.0001 0.0373 0.0373 
nRural_Urban 1 <0.0001 0.0442 -0.0442 <0.0001 0.0285 -0.0285 
nLocation_Type 2 <0.0001 0.0747 0.0749 <0.0001 0.0341 0.0341 
nVehicle_Special 
_Functions1 6 <0.0001 0.0193 0.0193 <0.0001 0.0145 0.0145 
nFirst_Vehicle_Defect1 9 <0.0001 0.0378 0.0378 <0.0001 0.0196 0.0196 
nCrash_Fault_Code 1 <0.0001 0.0819 0.0821 <0.0001 0.0466 -0.0467 
nTotal_Number_of_Drivers 11 <0.0001 0.1212 0.1221 <0.0001 0.0261 0.0261 
nWork_Area1 3 0.0143 0.0075 0.0075 0.0011 0.0084 0.0084 
nLocation_on_Roadway1 5 <0.0001 0.0991 0.0996 <0.0001 0.0130 0.0130 
nAlcohol_Drug_Use1 6 <0.0001 0.1034 0.1039 <0.0001 0.0574 0.0575 
nDivided_Undivided 
_Highway 2 <0.0001 0.0207 0.0207 <0.0001 0.0137 0.0137 
nTrafficway_Character 3 <0.0001 0.0608 0.0609 <0.0001 0.0191 0.0191 
nType_of_Shoulder 2 <0.0001 0.0295 0.0295 <0.0001 0.0160 0.0160 
nRoad_Surface_Type 5 <0.0001 0.0162 0.0162 <0.0001 0.0157 0.0157 
nNumber_of_Lanes 28 <0.0001 0.0432 0.0433 <0.0001 0.0239 0.0239 
nCRRATECD 32 <0.0001 0.0997 0.1002 <0.0001 0.0521 0.0521 
Median_type 2 <0.0001 0.0201 0.0201 0.0022 0.0095 0.0095 
nFirst_Traffic_Control 12 <0.0001 0.0513 0.0514 <0.0001 0.0468 0.0468 
nSite_Location 3 <0.0001 0.0517 0.0518 <0.0001 0.0601 0.0602 
nFirst_Road_Condition 9 0.6691 0.0060 0.0060 0.5197 0.0065 0.0065 
nTYPEPARK 7 <0.0001 0.0512 0.0512 <0.0001 0.0328 0.0328 
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  Driver 1 Driver 2 

Variable 
DF 

PCHI p-value CONTGY CRAM  V p-value CONTGY CRAM  V 
nNUM_LEGS 3 <0.0001 0.0214 0.0214 0.0006 0.0145 0.0145 
nRDACCESS 1 0.7822 0.0008 0.0008 0.0379 0.0056 0.0056 
TIME_GROUP 3 <0.0001 0.0430 0.0430 <0.0001 0.0157 0.0158 
nLighting_Condition 5 <0.0001 0.0595 0.0596 <0.0001 0.0267 0.0267 
nWeather 5 <0.0001 0.0209 0.0209 <0.0001 0.0178 0.0178 
nDay_of_Week 6 <0.0001 0.0134 0.0134 0.9511 0.0029 0.0029 
nRoad_Surface_Condition 4 <0.0001 0.0213 0.0213 <0.0001 0.0180 0.0180 
nFirst_Vision_Obstructed 10 0.6020 0.0066 0.0066 <0.0001 0.0189 0.0189 
month 11 0.0085 0.0116 0.0116 0.3190 0.0081 0.0081 

NOTES: 

1) DF_PCHI= Degrees of freedom of independence Pearson Chi test, CONTGY= Contingency coefficient, 
CRAM V= Cramer’s V coefficient  

2) Horizontal lines separate the three main variable groups in the following order: driver-, crash-vehicle-, 
road- and environment-related. 

3) Variables in shadow are statistically independent from the severe driver injury (response) for at least one 
of the drivers in the analysis. 
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Categorical Data Analysis  (High-speed Multilane Involvements with Complete Records; N=156,688) 

  Driver 1 Driver 2 

Variable 
DF 

PCHI p-value CONTGY 
CRAM  

V p-value CONTGY CRAM  V 
Year 2 0.0589 0.0065 0.0065 0.0055 0.0086 0.0086 
Driver_Ageg_Group1 4 <0.0001 0.0419 0.0420 <0.0001 0.0168 0.0168 
nSex1 2 <0.0001 0.0229 0.0229 <0.0001 0.0146 0.0146 
nFirst_Safety_Equipment1 7 <0.0001 0.2066 0.2111 <0.0001 0.1674 0.1698 
Speeding1  2 <0.0001 0.0963 0.0967 <0.0001 0.0664 0.0666 
nFirst_Contributing_Cause1 25 <0.0001 0.1129 0.1136 <0.0001 0.0543 0.0544 
nVehicle_Fault_Code1 1 <0.0001 0.0789 0.0792 <0.0001 0.0168 0.0168 
Red_light_running1 1 <0.0001 0.0195 0.0195 0.0001 0.0102 0.0102 
nResidence_Code1 5 <0.0001 0.0290 0.0290 0.0002 0.0132 0.0132 
nPhysical_Defects1 7 <0.0001 0.0559 0.0560 <0.0001 0.0157 0.0157 
nEjected1 3 <0.0001 0.2355 0.2424 <0.0001 0.1891 0.1926 
nRecommend_Re_Exam1 2 <0.0001 0.0247 0.0247 0.4068 0.0036 0.0036 
nRace1 4 <0.0001 0.0312 0.0312 0.0014 0.0112 0.0112 
nFirst_Harmful_Event1 39 <0.0001 0.1758 0.1786 <0.0001 0.1096 0.1103 
nOn_Off_Roadway 1 <0.0001 0.0768 0.0770 0.0472 0.0053 -0.0053 
nPoint_of_Impact1 21 <0.0001 0.1558 0.1577 <0.0001 0.1021 0.1027 
nVehicle_Movement1 13 <0.0001 0.0674 0.0676 <0.0001 0.0642 0.0643 
nType_of_Vehicle1 15 <0.0001 0.1827 0.1858 <0.0001 0.1848 0.1881 
nVehicle_Use1 16 <0.0001 0.0418 0.0419 <0.0001 0.0333 0.0333 
CRASH_LANE 7 <0.0001 0.0988 0.0993 <0.0001 0.0369 0.0369 
nRural_Urban 1 <0.0001 0.0587 -0.0588 <0.0001 0.0389 -0.0389 
nLocation_Type 2 <0.0001 0.0860 0.0863 <0.0001 0.0397 0.0397 
nVehicle_Special_Functions1 6 <0.0001 0.0203 0.0203 <0.0001 0.0157 0.0157 
nFirst_Vehicle_Defect1 9 <0.0001 0.0419 0.0419 <0.0001 0.0187 0.0187 
nCrash_Fault_Code 1 <0.0001 0.0845 0.0849 <0.0001 0.0471 -0.0471 
nTotal_Number_of_Drivers 11 <0.0001 0.1200 0.1209 <0.0001 0.0283 0.0283 
nWork_Area1 3 0.0893 0.0069 0.0069 0.0211 0.0074 0.0074 
nLocation_on_Roadway1 5 <0.0001 0.0981 0.0986 <0.0001 0.0140 0.0140 
nAlcohol_Drug_Use1 6 <0.0001 0.1052 0.1058 <0.0001 0.0622 0.0623 
nDivided_Undivided 
_Highway 2 <0.0001 0.0191 0.0191 <0.0001 0.0124 0.0124 
nTrafficway_Character 3 <0.0001 0.0579 0.0580 <0.0001 0.0203 0.0203 
nType_of_Shoulder 2 <0.0001 0.0397 0.0397 <0.0001 0.0189 0.0189 
nRoad_Surface_Type 5 <0.0001 0.0159 0.0159 0.0004 0.0128 0.0128 
nNumber_of_Lanes 28 <0.0001 0.0470 0.0471 0.0003 0.0199 0.0199 
nCRRATECD 32 <0.0001 0.0997 0.1002 <0.0001 0.0521 0.0521 
Median_type 2 <0.0001 0.0201 0.0201 0.0022 0.0095 0.0095 
nFirst_Traffic_Control 12 <0.0001 0.0554 0.0554 <0.0001 0.0434 0.0435 
nSite_Location 3 <0.0001 0.0514 0.0515 <0.0001 0.0585 0.0586 
nFirst_Road_Condition 9 0.1266 0.0101 0.0101 0.6185 0.0072 0.0072 
nTYPEPARK 7 <0.0001 0.0512 0.0512 <0.0001 0.0328 0.0328 
nNUM_LEGS 3 <0.0001 0.0214 0.0214 0.0006 0.0145 0.0145 
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  Driver 1 Driver 2 

Variable 
DF 

PCHI p-value CONTGY 
CRAM  

V p-value CONTGY CRAM  V 
nRDACCESS 1 0.7822 0.0008 0.0008 0.0379 0.0056 0.0056 
TIME_GROUP 3 <0.0001 0.0429 0.0429 <0.0001 0.0163 0.0163 
nLighting_Condition 5 <0.0001 0.0703 0.0704 <0.0001 0.0339 0.0339 
nWeather 5 <0.0001 0.0220 0.0220 <0.0001 0.0151 0.0151 
nDay_of_Week 6 <0.0001 0.0157 0.0157 0.9382 0.0036 0.0036 
nRoad_Surface_Condition 4 <0.0001 0.0212 0.0212 <0.0001 0.0141 0.0141 
nFirst_Vision_Obstructed 10 0.4711 0.0084 0.0084 <0.0001 0.0174 0.0174 
month 11 0.0143 0.0132 0.0132 0.1237 0.0108 0.0108 

NOTES: 

1) DF_PCHI= Degrees of freedom of independence Pearson Chi test, CONTGY= Contingency coefficient, 
CRAM V= Cramer’s V coefficient  

2) Horizontal lines separate the three main variable groups in the following order: driver, crash-vehicle, road 
and environment-related. 

3) Variables in shadow are statistically independent from the severe driver injury (response) for at least one 
of the drivers in the analysis. 
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Test of Independence between Driver Section Number and the Variables Listed                           
(Sample n=118,790; Complete N= 394,394) 

Variable p-value using  
random sample 

p-value using 
complete sample 

Severe_driver_x 0.000298199 0.0002982 
Year 0.000298199 1 
Driver_Ageg_Group_x 0.177952724 <0.0001 
Gender_x <0.0001 <0.0001 
Safety_Equipment_x <0.0001 <0.0001 
Speeding_x <0.0001 <0.0001 
Contributing_Cause_x <0.0001 <0.0001 
At_Fault_driver_x <0.0001 <0.0001 
Red_light_running_x <0.0001 <0.0001 
Residence_Code_x <0.0001 0.00613153 
Physical_Defects_x 0.325869667 <0.0001 
Ejected_x <0.0001 <0.0001 
nRecommend_Re_Exam_x <0.0001 <0.0001 
nRace_x <0.0001 <0.0001 
Harmful_Event_Group_x <0.0001 <0.0001 
Off_Roadway  <0.0001 1 
Point_Impact_x <0.0001 <0.0001 
Vehicle_Maneuver_x <0.0001 <0.0001 
Type_of_Vehicle_x <0.0001 <0.0001 
Private_vehicle_use_x <0.0001 <0.0001 
CRASH_LANE5  0.003356631 1 
nRural_Urban  <0.0001 1 
Location_Type   0.751214189 1 
nVehicle_Special_Functions_x 0.00312239 <0.0001 
nFirst_Vehicle_Defect_x <0.0001 <0.0001 
nCrash_Fault_Code <0.0001 1 
nTotal_Number_of_Drivers <0.0001 1 
nWork_Area_x 0.021756961 0.49171805 
nAlcohol_Drug_Use_x 0.397420419 <0.0001 
Undivided_Highway <0.0001 1 
Roadway_Curve  0.082809347 1 
nType_of_Shoulder  0.000492899 1 
Concrete_Surface  <0.0001 1 
Number_of_Lanes  0.625110641 1 
nCRRATECD 0.045392449 1 
Median_type 0.000126276 1 
Traffic_Control 0.171939914 1 
Intersection <0.0001 1 
nFirst_Road_Condition <0.0001 1 
Speed_limit_x 0.602929272 <0.0001 
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Variable p-value using  
random sample 

p-value using 
complete sample 

nTYPEPARK <0.0001 1 
nNUM_LEGS 0.22404173 1 
nRDACCESS 0.105439642 1 
TIME_GROUP2  <0.0001 1 
Lighting_Condition   <0.0001 1 
Weather   0.988194757 1 
Day_of_Week   0.259111505 1 
nRoad_Surface_Condition  0.192308862 1 
nFirst_Vision_Obstructed <0.0001 1 
RAIN_SEASON   0.320956912 1 
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APPENDIX C:  LIST OF VARIABLES CONSIDERED IN FINAL 
ANALYSIS 
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Variables Considered in Final Analysis 
(Variables in bold were added from the RCI data merge) 

 
 

Type Variable Value Description 

D
R

IV
ER

-R
EL

AT
ED

 V
AR

IA
BL

ES
 

Driver_Ageg_Group_x 

1 25-64 years 
2 15-19 years 
3 20-24 years 
4 65-79 years 
5 80-98 years 

Gender_x  0 Male 
1 Female 

Safety_Equipment_x  0 None or other 
1 Seat belt / child restraint 

Speeding_x  
0 Not Speeding 
1 Speeding 
2 Unknown 

Contributing_Cause_x  

1 No improper driver action 
2 Aggressive Driving 
3 Alcohol / Drugs 
4 Other 

At_Fault_driver_x  0 Not cited 
1 Cited 

Red_light_running_x 0 No 
1 Yes 

Residence_Code_x  0 Not Florida 
1 Florida Resident 

Physical_Defects_x  0 No 
1 Yes 

Ejected_x  0 No 
1 Total or partial 

C
R

AS
H

 

Harmful_Event_Group_x  

1 Rear-End 
2 Head-On 
3 Angle 
4 Left Turn 
5 Sideswipe 
6 Fixed Object 
7 Other 

Off_Roadway  0 No 
1 Yes 

Point_Impact_x  0 Not Driver's side 
1 Driver's side 

** The first level shown is the base value for the coefficients 
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Variables Considered in Final Analysis  (Continued) 
(Variables in bold were added from the RCI data merge) 

 
 

Type Variable Value Description 

VE
H

-C
O

LL
IS

IO
N

 V
AR

IA
BL

ES
 

Vehicle_Maneuver_x  

1 Straight Ahead 
2 Slowing / Stopping 
3 Left Turn 
4 Other  

Type_of_Vehicle_x  

1 Automobile 
2 Van, Light Truck, Pick up 
3 Trucks and buses 
4 Bicycle and motorcycle 
5 Other 

Private_vehicle_use_x  0 No 
1 Yes 

nRural_Urban  0 Rural 
1 Urban 

Location_Type   
1 Residential 
2 Business 
3 Open Country 

Multivehicle 0 No 
1 Yes 

Vehicle_Defect  0 No 
1 Yes 

nWork_Area_x 
1 None 
2 Nearby 
3 Entered 

R
O

AD
-R

EL
AT

ED
  

Undivided_Highway  0 No 
1 Yes 

Roadway_Curve  0 No 
1 Yes 

Concrete_Surface  0 No 
1 Yes 

Number_of_Lanes  

4 4 lane major road 
5 5 lane major road 
6 6 lane major road 
7 7 lane major road 
8 8 lane major road 

Median_type  1 Raised 
2 Paved 

** The first level shown is the base value for the coefficients 
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Variables Considered in Final Analysis 
(Variables in bold were added from the RCI data merge) Continued 

 
 

Type Variable Value Description 

R
O

AD
W

AY
-R

EL
AT

ED
 V

AR
IA

BL
ES

 

Traffic_Control  
1 Other control or none 
2 Traffic signal or yield 
3 Stop sign or flashing lights 

Intersection 0 No 
1 Yes 

Speed_limit_x 0 Less than 40 mph, more than 45 mph 
1 40-45 mph 

nType_of_Shoulder  
1 Paved 
2 Unpaved 
3 Curb 

Road_Condition 
1 Dry 
2 Wet 
3 Other 

ADT_PER_LANE  continuous Section aadt  / Number of lanes 

Median_size  

1 Median width ≥ 40 ft 
2 Median width < 15.5 ft 
3 15.5 ft ≤ Median width < 19.5 ft 
4 19.5 ft ≤ Median width < 40 ft 

nAVGTFACT    continuous 
Percentage of aadt  that consists of 
trucks 

Skid_Resistance  0 1 ≤ Friction Number < 35 
1 Friction Number ≥ 35 

Lane_width 

1 11 ft ≤ Lane width ≤ 12 ft 
2 Lane width < 10 ft 
3 10 ft ≤ Lane width < 11 ft 
4 Lane width > 12 ft 

Shoulder_width 
(outside shoulder) 

1 Shoulder width < 6 ft 
2 6 ft ≤ Shoulder width < 8 ft 
3 8 ft ≤ Shoulder width < 10 ft 
4 Shoulder width ≥ 10 ft 

LIGHTCDE 

N 
One or none non-high mast lighting 
exists 

P Partial non-high mast lighting exists 
  (Rates of 4-24 lights per mile) 
Y Full non-high mast lighting exists 
  (Rates of 25 lights per mile or more) 

** The first level shown is the base value for the coefficients 
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Variables Considered in Final Analysis  (Continued) 
(Variables in bold were added from the RCI data merge) 

 
 

Type Variable Value Description 

R
O

AD
W

AY-R
ELATED

 VAR
IABLES 

LIGHTING 

N 
One or none high mast lighting 
exists 

P Partial high mast lighting exists 
  (Rates of 4-9 lights per mile) 
Y Full high mast lighting exists 

  
(Rates of 10 lights per mile or 
more) 

Access_class 

2 Access Management Class 2,3,4 
5 Access Management Class 5 
6 Access Management Class 6 
7 Access Management Class 7 
9 Non applicable 

AUX_Lane_Type 

1 No auxiliary lanes (base value) 
9 Left Turn lane (others) 
9 Right Turn lane (others) 
9 Bus lane (others) 
5 Merging (inside) 
6 Merging (outside) 
7 Parking lanes 

AUX_Lane_Num 

1 No auxiliary lanes 
2 One auxiliary lanes 
3 Two auxiliary lanes 
4 Three auxiliary lanes 
5 More than three auxiliary lanes 

Type_Friction_Course 

0 Friction course type 2 (FC-2) 
1 Friction course type 1 (FC-1) 
4 Friction course type 4 (FC-4) 
5 Friction course type 5 (FC-5) 
9 Not applicable or other (FC-3, 6) 

Pavement_condition 

1 Poor or very poor 
2 Fair 
3 Good  
4 Very good 

Sidewalk_width_group 
1 Sidewalk width < 4 ft 
2 4 ft ≤ Sidewalk width < 6 ft 
3 Sidewalk width ≥ 6 ft 

** The first level shown is the base value for the coefficients 
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Variables Considered in Final Analysis  (Continued) 
(Variables in bold were added from the RCI data merge) 

 
 

Type Variable Value Description 

R
O

AD
 

Urban_size 
1 Rural 
2 Small Urban or urbanized 
3 Large Urbanized or Metropolitan 

EN
VI

R
O

N
M

EN
TA

L 
 

TIME_GROUP2  0 Time of crash: 6AM- 6PM 
1 Time of crash: 6PM- 6AM 

Lighting_Condition   
1 Daylight / Dusk / Dawn 
2 Dark with street lighting 
3 Dark without street lighting 

Road_Surface_Condition  

1 Dry 
2 Wet 
3 Slippery or Icy 
4 Other 

Vision_Obstructed 

1 Vision Not Obscured 

2 
Inclement Weather, Fog, Smoke, 
Glare 

3 Parked/Stopped Vehicle 
4 Other 

** The first level shown is the base value for the coefficients 
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APPENDIX D: INJURY SEVERITY MODELS’ FINAL ANALYSIS – 
MODELS BY ROAD ENTITY 
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Injury Severity Regression Model 
(for a Sample of Driver Involvements of All Crashes) 

 

Parameter   DF Estimate 
Standard 

Error 
Wald chi-

square 
Pr > chi-

square 
Intercept   1 -0.8615 0.1441 35.7257 <.0001 

Driver_Ageg_Group_x 5 1 0.4829 0.077 39.3597 <.0001 

Driver_Ageg_Group_x 4 1 0.3523 0.048 53.8723 <.0001 

Driver_Ageg_Group_x 3 1 -0.2494 0.0424 34.692 <.0001 

Driver_Ageg_Group_x 2 1 -0.2648 0.0471 31.6077 <.0001 

Ejected_x   1 1.4517 0.0693 438.965 <.0001 

Speeding_x 2 1 -0.1468 0.1202 1.4914 0.222 

Speeding_x 1 1 -0.894 0.0918 94.7695 <.0001 

Gender_x   1 0.1963 0.0631 9.6756 0.0019 

Safety_Equipment_x 1 1 -1.1936 0.0465 660.1324 <.0001 

Gender_x*Safety_Equi 1 1 0.2195 0.0705 9.6942 0.0018 

At_Fault_driver_x   1 -0.6207 0.0387 257.5631 <.0001 

Residence_Code_x   1 0.1611 0.0675 5.6861 0.0171 

Physical_Defects_x   1 0.4286 0.0743 33.2722 <.0001 

Harmful_Event_Group_ 7 1 0.0928 0.0438 4.4981 0.0339 

Harmful_Event_Group_ 6 1 0.5934 0.07 71.8379 <.0001 

Harmful_Event_Group_ 5 1 -0.2495 0.0898 7.7106 0.0055 

Harmful_Event_Group_ 4 1 0.8073 0.0597 182.945 <.0001 

Harmful_Event_Group_ 3 1 0.5789 0.0469 152.2623 <.0001 

Harmful_Event_Group_ 2 1 1.056 0.084 157.8853 <.0001 

Contributing_Cause_x 4 1 0.4732 0.04 140.2797 <.0001 

Contributing_Cause_x 3 1 0.5583 0.1108 25.3682 <.0001 

Contributing_Cause_x 2 1 0.4655 0.0496 88.0634 <.0001 

Type_of_Vehicle_x 5 1 -0.2796 0.1371 4.1565 0.0415 

Type_of_Vehicle_x 4 1 0.0491 0.0784 0.3915 0.5315 

Type_of_Vehicle_x 3 1 -1.0309 0.113 83.1693 <.0001 

Type_of_Vehicle_x 2 1 -0.1983 0.035 32.1383 <.0001 

point_impact_x   1 0.0874 0.0725 1.4552 0.2277 

point_imp*Speeding_x 2 1 0.2149 0.1349 2.5378 0.1111 

point_imp*Speeding_x 1 1 0.3451 0.0889 15.0605 0.0001 

Off_Roadway   1 -0.4899 0.0798 37.6589 <.0001 

Off_Roadw*Speeding_x 2 1 -0.2443 0.1266 3.7237 0.0536 

Off_Roadw*Speeding_x 1 1 0.2539 0.0972 6.8214 0.009 

Off_Roadw*Multivehic 1 1 0.7095 0.1195 35.2598 <.0001 
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Parameter   DF Estimate 
Standard 

Error 
Wald chi-

square 
Pr > chi-

square 
nWork_Area_x 3 1 -0.1907 0.1037 3.3812 0.0659 

nWork_Area_x 2 1 -0.2875 0.0887 10.5022 0.0012 

Multivehicle 1 1 -0.7576 0.1088 48.4819 <.0001 

Intersect*Multivehic 1 1 0.3894 0.0984 15.6573 <.0001 

Speed_limit_x 1 1 -0.3917 0.0354 122.3589 <.0001 

ADT_PER_LANE   1 -0.0285 0.00574 24.6505 <.0001 

nAVGTFACT   1 0.0108 0.00318 11.4155 0.0007 

LIGHTING Y 1 0.2856 0.1243 5.2746 0.0216 

LIGHTING P 1 1.2544 0.4622 7.3658 0.0066 

Traffic_Control 3 1 0.1202 0.0503 5.7133 0.0168 

Traffic_Control 2 1 -0.00315 0.037 0.0072 0.9322 

Access_class 9 1 0.03 0.043 0.4862 0.4856 

Access_class 7 1 -0.2467 0.0701 12.4034 0.0004 

Access_class 6 1 -0.1827 0.0582 9.8575 0.0017 

Access_class 5 1 -0.1295 0.0376 11.8684 0.0006 

nrural_urban   1 -0.1285 0.0598 4.627 0.0315 

nType_of_Shoulder 3 1 0.0853 0.0374 5.2146 0.0224 

nType_of_Shoulder 2 1 -0.0338 0.039 0.7541 0.3852 

Lane_width 4 1 -0.1905 0.0493 14.9527 0.0001 

Lane_width 3 1 -0.2048 0.0706 8.4159 0.0037 

Lane_width 2 1 -0.2104 0.0545 14.9199 0.0001 

roadway_curve   1 0.2666 0.0642 17.2382 <.0001 

Sidewalk_width_group 3 1 -0.235 0.0454 26.7368 <.0001 

Sidewalk_width_group 2 1 -0.1609 0.0374 18.4864 <.0001 

LIGHTCDE Y 1 0.1216 0.0544 4.9992 0.0254 

LIGHTCDE P 1 -0.1976 0.051 14.9979 0.0001 

Type_Friction_Course 9 1 -0.0255 0.036 0.5022 0.4786 

Type_Friction_Course 5 1 -0.1846 0.079 5.4615 0.0194 

Type_Friction_Course 4 1 -0.0851 0.0387 4.8203 0.0281 

Type_Friction_Course 1 1 -0.3066 0.0656 21.8356 <.0001 

Intersection   1 -0.1853 0.0974 3.6237 0.057 

Intersect*nrural_urb   1 -0.1486 0.0556 7.1415 0.0075 

Skid_Resistance   1 0.1806 0.0412 19.1908 <.0001 

nrural_ur*Skid_Resis   1 -0.0845 0.0607 1.942 0.1635 

Day_of_Week   1 -0.0985 0.0319 9.5222 0.002 
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Injury Severity Regression Model 
(for a Sample of Driver Involvements of Crashes At Intersections) 

 

Parameter   DF Estimate 
Standard 

Error 
Wald chi-

square 
Pr > chi-

square 
Intercept   1 -1.5017 0.1458 106.0246 <.0001 

Driver_Ageg_Group_x 5 1 0.5907 0.0926 40.7406 <.0001 

Driver_Ageg_Group_x 4 1 0.4331 0.061 50.4666 <.0001 

Driver_Ageg_Group_x 3 1 -0.281 0.0615 20.8544 <.0001 

Driver_Ageg_Group_x 2 1 -0.2315 0.0661 12.2485 0.0005 

Ejected_x   1 1.4373 0.1075 178.7378 <.0001 

Gender_x   1 0.3613 0.0399 82.1808 <.0001 

Safety_Equipment_x 1 1 -1.0658 0.0546 380.955 <.0001 

Speeding_x 2 1 -0.4946 0.0628 62.0449 <.0001 
Speeding_x 1 1 -0.635 0.05 161.5623 <.0001 

Contributing_Cause_x 4 1 0.2591 0.0576 20.2208 <.0001 

Contributing_Cause_x 3 1 0.3592 0.1852 3.7616 0.0524 

Contributing_Cause_x 2 1 0.4834 0.0663 53.222 <.0001 

At_Fault_driver_x   1 -0.6337 0.0562 127.3439 <.0001 

Red_light_running_x   1 0.2874 0.0949 9.1735 0.0025 

Residence_Code_x   1 0.2513 0.0969 6.721 0.0095 

Physical_Defects_x   1 0.413 0.1159 12.7039 0.0004 

Harmful_Event_Group_ 7 1 0.0867 0.0611 2.0142 0.1558 

Harmful_Event_Group_ 6 1 0.7766 0.1069 52.7508 <.0001 

Harmful_Event_Group_ 5 1 -0.3227 0.1445 4.9879 0.0255 

Harmful_Event_Group_ 4 1 0.8009 0.0733 119.2727 <.0001 

Harmful_Event_Group_ 3 1 0.5945 0.0635 87.7639 <.0001 

Harmful_Event_Group_ 2 1 0.8169 0.1206 45.8911 <.0001 

Type_of_Vehicle_x 5 1 -0.4243 0.2056 4.2575 0.0391 

Type_of_Vehicle_x 4 1 0.2415 0.1179 4.1987 0.0405 

Type_of_Vehicle_x 3 1 -1.1246 0.1736 41.9484 <.0001 

Type_of_Vehicle_x 2 1 -0.249 0.0486 26.2746 <.0001 

point_impact_x   1 0.1716 0.1104 2.4153 0.1202 

point_imp*Speeding_x 2 1 0.3762 0.1793 4.4021 0.0359 

point_imp*Speeding_x 1 1 0.4101 0.1268 10.4595 0.0012 

Speed_limit_x 1 1 -0.4201 0.0454 85.823 <.0001 

Access_class 9 1 0.00901 0.0594 0.023 0.8794 

Access_class 7 1 -0.3906 0.0949 16.9464 <.0001 

Access_class 6 1 -0.2795 0.0815 11.7678 0.0006 
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Parameter   DF Estimate 
Standard 

Error 
Wald chi-

square 
Pr > chi-

square 
Access_class 5 1 -0.1666 0.0501 11.0488 0.0009 

nrural_urban   1 -0.2953 0.0703 17.6653 <.0001 

nType_of_Shoulder 3 1 0.1081 0.0508 4.529 0.0333 
nType_of_Shoulder 2 1 -0.0273 0.0554 0.2425 0.6224 

Lane_width 4 1 -0.2662 0.0677 15.46 <.0001 

Lane_width 3 1 -0.2202 0.0924 5.6806 0.0172 

Lane_width 2 1 -0.1631 0.0687 5.6431 0.0175 

Sidewalk_width_group 3 1 -0.3238 0.0598 29.3069 <.0001 

Sidewalk_width_group 2 1 -0.256 0.0501 26.0675 <.0001 

LIGHTCDE Y 1 0.1498 0.075 3.9869 0.0459 

LIGHTCDE P 1 -0.1358 0.068 3.988 0.0458 

Type_Friction_Course 9 1 -0.0048 0.0498 0.0093 0.9232 

Type_Friction_Course 5 1 -0.3204 0.1221 6.888 0.0087 

Type_Friction_Course 4 1 -0.024 0.0525 0.209 0.6476 

Type_Friction_Course 1 1 -0.3045 0.0907 11.2717 0.0008 

Skid_Resistance   1 0.1338 0.0565 5.6056 0.0179 

nrural_ur*Skid_Resis   1 -0.0311 0.0828 0.1407 0.7076 
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Injury Severity Regression Model 
(for a Sample of Driver Involvements of Crashes at Signalized Intersections) 

 

Parameter   DF Estimate 
Standard 

Error 
Wald chi-

square 
Pr > chi-

square 
Intercept   1 -1.502 0.2031 54.6654 <.0001 

Driver_Ageg_Group_x 5 1 0.5381 0.1344 16.0317 <.0001 

Driver_Ageg_Group_x 4 1 0.3552 0.089 15.9203 <.0001 

Driver_Ageg_Group_x 3 1 -0.3632 0.0884 16.8653 <.0001 

Driver_Ageg_Group_x 2 1 -0.2365 0.0943 6.2886 0.0122 

Gender_x   1 0.3692 0.0557 43.9095 <.0001 

Safety_Equipment_x 1 1 -1.0555 0.0766 189.941 <.0001 

Speeding_x 2 1 -0.323 0.0989 10.6724 0.0011 

Speeding_x 1 1 -0.641 0.0713 80.8085 <.0001 

At_Fault_driver_x   1 -0.5285 0.0693 58.2091 <.0001 

Red_light_running_x   1 0.3642 0.1033 12.43 0.0004 

Residence_Code_x   1 0.462 0.1493 9.5726 0.002 

Physical_Defects_x   1 0.5547 0.153 13.137 0.0003 

Ejected_x   1 1.4542 0.1621 80.4332 <.0001 

Harmful_Event_Group_ 7 1 -0.0184 0.0815 0.0509 0.8216 

Harmful_Event_Group_ 6 1 0.9469 0.1518 38.914 <.0001 

Harmful_Event_Group_ 5 1 -0.6168 0.2356 6.8541 0.0088 

Harmful_Event_Group_ 4 1 0.8346 0.1087 58.9455 <.0001 

Harmful_Event_Group_ 3 1 0.5 0.0908 30.3451 <.0001 

Harmful_Event_Group_ 2 1 0.7831 0.1637 22.8878 <.0001 

point_impact_x   1 0.4213 0.082 26.4191 <.0001 

Vehicle_Maneuver_x 4 1 0.0954 0.184 0.2688 0.6042 

Vehicle_Maneuver_x 3 1 0.2296 0.0809 8.066 0.0045 

Vehicle_Maneuver_x 2 1 -0.2741 0.0989 7.6875 0.0056 

Type_of_Vehicle_x 5 1 -0.5157 0.3127 2.7207 0.0991 

Type_of_Vehicle_x 4 1 0.1708 0.1812 0.8888 0.3458 

Type_of_Vehicle_x 3 1 -1.0046 0.2321 18.7334 <.0001 

Type_of_Vehicle_x 2 1 -0.2101 0.068 9.5585 0.002 

nrural_urban   1 -0.2126 0.0564 14.1913 0.0002 

Speed_limit_x 1 1 -0.3442 0.0663 26.9699 <.0001 

nType_of_Shoulder 3 1 0.1503 0.0695 4.6786 0.0305 

nType_of_Shoulder 2 1 -0.0471 0.0823 0.3279 0.5669 

Lane_width 4 1 -0.2086 0.09 5.3735 0.0204 

Lane_width 3 1 -0.3902 0.1276 9.3467 0.0022 
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Parameter   DF Estimate 
Standard 

Error 
Wald chi-

square 
Pr > chi-

square 
Lane_width 2 1 -0.2214 0.0905 5.9819 0.0145 

Access_class 9 1 0.039 0.0851 0.2103 0.6465 

Access_class 7 1 -0.4751 0.138 11.8589 0.0006 

Access_class 6 1 -0.4326 0.121 12.7897 0.0003 

Access_class 5 1 -0.1797 0.0682 6.9412 0.0084 

Type_Friction_Course 9 1 -0.0879 0.0708 1.5392 0.2147 

Type_Friction_Course 5 1 -0.6178 0.2174 8.0718 0.0045 

Type_Friction_Course 4 1 -0.0117 0.0734 0.0255 0.8731 

Type_Friction_Course 1 1 -0.3755 0.1368 7.531 0.0061 

Sidewalk_width_group 3 1 -0.4082 0.081 25.376 <.0001 

Sidewalk_width_group 2 1 -0.362 0.0684 27.9692 <.0001 
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Injury Severity Regression Model 
(for a Sample of Driver Involvements of Crashes in Road Segments and Unsignalized Intersections) 

 

Parameter   DF Estimate 
Standard 

Error 
Wald chi-

square 
Pr > chi-

square 
Intercept   1 -1.5058 0.1811 69.0951 <.0001 

Driver_Ageg_Group_x 5 1 0.4104 0.0973 17.7749 <.0001 

Driver_Ageg_Group_x 4 1 0.3434 0.0584 34.586 <.0001 

Driver_Ageg_Group_x 3 1 -0.2235 0.0494 20.4331 <.0001 
Driver_Ageg_Group_x 2 1 -0.2851 0.0557 26.2288 <.0001 
Ejected_x   1 1.4773 0.0783 355.5834 <.0001 

Speeding_x 2 1 -0.1925 0.124 2.4089 0.1206 

Speeding_x 1 1 -1.0001 0.0958 108.9808 <.0001 

Gender_x   1 0.1894 0.0738 6.58 0.0103 

Safety_Equipment_x 1 1 -1.1979 0.0546 481.8771 <.0001 

Gender_x*Safety_Equi 1 1 0.2263 0.0833 7.3866 0.0066 

At_Fault_driver_x   1 -0.6592 0.0458 207.2838 <.0001 

Physical_Defects_x   1 0.4034 0.0873 21.3638 <.0001 

Harmful_Event_Group_ 7 1 0.1242 0.0525 5.5961 0.018 

Harmful_Event_Group_ 6 1 0.6095 0.0735 68.8627 <.0001 

Harmful_Event_Group_ 5 1 -0.1787 0.1006 3.1536 0.0758 

Harmful_Event_Group_ 4 1 0.706 0.0788 80.341 <.0001 

Harmful_Event_Group_ 3 1 0.5824 0.0591 97.0609 <.0001 

Harmful_Event_Group_ 2 1 1.1667 0.1007 134.2465 <.0001 
Contributing_Cause_x 4 1 0.6373 0.0462 190.6432 <.0001 

Contributing_Cause_x 3 1 0.8008 0.1243 41.4915 <.0001 

Contributing_Cause_x 2 1 0.58 0.0578 100.6664 <.0001 
Type_of_Vehicle_x 5 1 -0.2254 0.1608 1.9665 0.1608 
Type_of_Vehicle_x 4 1 -0.0359 0.0883 0.1648 0.6848 

Type_of_Vehicle_x 3 1 -1.015 0.1636 38.4739 <.0001 

Type_of_Vehicle_x 2 1 -0.1861 0.042 19.6509 <.0001 

point_impact_x   1 0.0894 0.0818 1.1951 0.2743 

point_imp*Speeding_x 2 1 0.0886 0.1632 0.2945 0.5873 

point_imp*Speeding_x 1 1 0.2806 0.1022 7.5403 0.006 
Off_Roadway   1 -0.3029 0.0679 19.8994 <.0001 
Off_Roadw*Speeding_x 2 1 -0.1102 0.1335 0.6809 0.4093 

Off_Roadw*Speeding_x 1 1 0.4169 0.1027 16.4861 <.0001 

nWork_Area_x 3 1 -0.1873 0.119 2.4794 0.1153 

nWork_Area_x 2 1 -0.298 0.1083 7.5735 0.0059 

Private_vehicle_use_   1 0.448 0.133 11.3421 0.0008 
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Parameter   DF Estimate 
Standard 

Error 
Wald chi-

square 
Pr > chi-

square 
Private_ve*nAVGTFACT   1 -0.0256 0.0102 6.3133 0.012 

Speed_limit_x 1 1 -0.4195 0.0413 103.1739 <.0001 

ADT_PER_LANE   1 -0.0411 0.00684 36.0999 <.0001 

nAVGTFACT   1 0.0338 0.00981 11.8843 0.0006 

LIGHTING Y 1 0.3385 0.1538 4.8422 0.0278 

LIGHTING P 1 1.311 0.6635 3.9039 0.0482 

Traffic_Control 3 1 0.2115 0.0485 19.0094 <.0001 

Traffic_Control 2 1 0.2769 0.182 2.314 0.1282 

nrural_urban   1 -0.2033 0.0635 10.2391 0.0014 

Lane_width 4 1 -0.1706 0.0603 8.0143 0.0046 

Lane_width 3 1 -0.1349 0.0872 2.3916 0.122 

Lane_width 2 1 -0.2012 0.0702 8.2139 0.0042 

roadway_curve   1 0.33 0.0681 23.5057 <.0001 

Sidewalk_width_group 3 1 -0.2224 0.0531 17.5614 <.0001 

Sidewalk_width_group 2 1 -0.117 0.0424 7.6027 0.0058 

LIGHTCDE Y 1 0.114 0.0685 2.7732 0.0959 

LIGHTCDE P 1 -0.1784 0.062 8.2748 0.004 

Type_Friction_Course 9 1 -0.0081 0.0427 0.036 0.8495 

Type_Friction_Course 5 1 -0.1017 0.0862 1.3923 0.238 

Type_Friction_Course 4 1 -0.0736 0.0437 2.8368 0.0921 

Type_Friction_Course 1 1 -0.2825 0.0756 13.9796 0.0002 

Skid_Resistance   1 0.2283 0.0486 22.0224 <.0001 

nrural_ur*Skid_Resis   1 -0.141 0.074 3.6325 0.0567 
AUX_Lane_Num 3 1 0.072 0.0611 1.3875 0.2388 

AUX_Lane_Num 2 1 -0.1258 0.052 5.8525 0.0156 

AUX_Lane_Num 1 1 0.0528 0.0377 1.9602 0.1615 
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Injury Severity Regression Model 
(for a Sample of Driver Involvements of Crashes in Road Segments) 

 

Parameter   DF Estimate 
Standard 

Error 
Wald chi-

square 
Pr > chi-

square 
Intercept   1 -1.1598 0.1538 56.8505 <.0001 

Driver_Ageg_Group_x 5 1 0.1439 0.1551 0.8613 0.3534 

Driver_Ageg_Group_x 4 1 0.2255 0.0818 7.6 0.0058 

Driver_Ageg_Group_x 3 1 -0.22 0.0604 13.2791 0.0003 

Driver_Ageg_Group_x 2 1 -0.288 0.0696 17.1175 <.0001 

Ejected_x   1 1.5113 0.0939 258.9663 <.0001 
Speeding_x 2 1 -0.1444 0.1366 1.118 0.2904 

Speeding_x 1 1 -0.9115 0.1025 79.1546 <.0001 

Gender_x   1 0.3764 0.0455 68.5432 <.0001 

Safety_Equipment_x 1 1 -1.1328 0.0558 411.3992 <.0001 

At_Fault_driver_x   1 -0.6357 0.0566 126.3422 <.0001 

Physical_Defects_x   1 0.4257 0.1009 17.8134 <.0001 

Harmful_Event_Group_ 7 1 0.1386 0.0632 4.8061 0.0284 

Harmful_Event_Group_ 6 1 0.6308 0.0832 57.4984 <.0001 

Harmful_Event_Group_ 5 1 -0.1008 0.1178 0.7315 0.3924 

Harmful_Event_Group_ 4 1 0.8354 0.1279 42.6461 <.0001 
Harmful_Event_Group_ 3 1 0.5978 0.0786 57.7835 <.0001 
Harmful_Event_Group_ 2 1 1.3997 0.1226 130.3463 <.0001 

Contributing_Cause_x 4 1 0.6973 0.0561 154.2651 <.0001 
Contributing_Cause_x 3 1 0.8338 0.1436 33.7086 <.0001 

Contributing_Cause_x 2 1 0.4975 0.0792 39.4087 <.0001 

Type_of_Vehicle_x 5 1 -0.1937 0.1953 0.9829 0.3215 

Type_of_Vehicle_x 4 1 -0.0774 0.1055 0.5388 0.4629 

Type_of_Vehicle_x 3 1 -0.9904 0.1567 39.9449 <.0001 

Type_of_Vehicle_x 2 1 -0.1369 0.0526 6.7632 0.0093 

Off_Roadway   1 -0.3344 0.0753 19.6953 <.0001 

Off_Roadw*Speeding_x 2 1 -0.0575 0.1524 0.1422 0.7061 

Off_Roadw*Speeding_x 1 1 0.3276 0.1147 8.1547 0.0043 
Speed_limit_x 1 1 -0.3898 0.0556 49.149 <.0001 
ADT_PER_LANE   1 -0.0534 0.00831 41.26 <.0001 

nAVGTFACT   1 0.0119 0.00415 8.2304 0.0041 

nrural_urban   1 -0.0879 0.0792 1.2313 0.2672 

roadway_curve   1 0.292 0.0816 12.7964 0.0003 

Sidewalk_width_group 3 1 -0.1854 0.0685 7.3244 0.0068 

Sidewalk_width_group 2 1 -0.0939 0.054 3.0214 0.0822 
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Parameter   DF Estimate 
Standard 

Error 
Wald chi-

square 
Pr > chi-

square 
LIGHTCDE Y 1 0.0515 0.0847 0.3699 0.5431 

LIGHTCDE P 1 -0.2613 0.0797 10.7481 0.001 

Type_Friction_Course 9 1 -0.0535 0.0539 0.9831 0.3214 

Type_Friction_Course 5 1 -0.0676 0.1058 0.409 0.5225 

Type_Friction_Course 4 1 -0.1184 0.0562 4.4327 0.0353 

Type_Friction_Course 1 1 -0.3248 0.0971 11.1878 0.0008 

Skid_Resistance   1 0.2659 0.0617 18.5609 <.0001 

nrural_ur*Skid_Resis   1 -0.1925 0.093 4.2805 0.0386 
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Injury Severity Regression Model 
(for Involvements of Crashes at Unsignalized Intersections) 

 

Parameter   DF Estimate 
Standard 

Error 
Wald chi-

square 
Pr > ch-

square 
Intercept   1 -1.1806 0.1517 60.6029 <.0001 

Driver_Ageg_Group_x 5 1 0.6533 0.1276 26.1955 <.0001 

Driver_Ageg_Group_x 4 1 0.5099 0.0837 37.0918 <.0001 

Driver_Ageg_Group_x 3 1 -0.1945 0.0862 5.0914 0.024 

Driver_Ageg_Group_x 2 1 -0.2239 0.0927 5.8371 0.0157 

Gender_x   1 0.3572 0.0571 39.0934 <.0001 

Safety_Equipment_x 1 1 -1.0609 0.0778 185.7502 <.0001 

Speeding_x 2 1 -0.4986 0.0894 31.1132 <.0001 

Speeding_x 1 1 -0.5562 0.0653 72.5139 <.0001 

Contributing_Cause_x 4 1 0.433 0.0826 27.478 <.0001 

Contributing_Cause_x 3 1 0.6865 0.2544 7.2837 0.007 

Contributing_Cause_x 2 1 0.6197 0.0896 47.8621 <.0001 

At_Fault_driver_x   1 -0.6733 0.0786 73.3714 <.0001 

Ejected_x   1 1.4279 0.1447 97.3116 <.0001 

Harmful_Event_Group_ 7 1 0.0961 0.0933 1.0594 0.3033 
Harmful_Event_Group_ 6 1 0.4924 0.1548 10.1252 0.0015 

Harmful_Event_Group_ 5 1 -0.2104 0.1891 1.2378 0.2659 

Harmful_Event_Group_ 4 1 0.591 0.1113 28.1834 <.0001 

Harmful_Event_Group_ 3 1 0.5621 0.0932 36.3935 <.0001 

Harmful_Event_Group_ 2 1 0.7264 0.1799 16.3001 <.0001 

point_impact_x   1 0.467 0.0701 44.4169 <.0001 

Type_of_Vehicle_x 5 1 -0.3453 0.2724 1.6073 0.2049 

Type_of_Vehicle_x 4 1 0.3019 0.1568 3.7102 0.0541 

Type_of_Vehicle_x 3 1 -1.2987 0.2609 24.7697 <.0001 

Type_of_Vehicle_x 2 1 -0.2987 0.0697 18.3765 <.0001 

nrural_urban   1 -0.4328 0.0579 55.8018 <.0001 
roadway_curve   1 0.4124 0.1221 11.3989 0.0007 

Speed_limit_x 1 1 -0.4744 0.0616 59.4099 <.0001 

ADT_PER_LANE   1 -0.0288 0.0104 7.7464 0.0054 

AUX_Lane_Num 3 1 0.174 0.1029 2.8599 0.0908 

AUX_Lane_Num 2 1 -0.1512 0.0877 2.9696 0.0848 

AUX_Lane_Num 1 1 0.1273 0.0611 4.335 0.0373 

Sidewalk_width_group 3 1 -0.2717 0.0808 11.3154 0.0008 

Sidewalk_width_group 2 1 -0.1823 0.0653 7.8025 0.0052 
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Odds Ratio Estimates 
(for the Six Road Entity Models) 

 
Variable Level Overall Inters Signal Segment Pure 

Segment 
Non- 

signal 
Driver_Ageg_Group_x 5 1.621 1.805 1.713 1.507 1.155 1.922 
Driver_Ageg_Group_x 4 1.422 1.542 1.426 1.410 1.253 1.665 
Driver_Ageg_Group_x 3 0.779 0.755 0.695 0.800 0.803 0.823 
Driver_Ageg_Group_x 2 0.767 0.793 0.789 0.752 0.750 0.799 
Ejected_x   4.270 4.209 4.281 4.381 4.533 4.170 
Gender_x   1.217 1.435 1.447 1.209 1.457 1.429 
Safety_Equipment_x 1 0.303 0.344 0.348 0.302 0.322 0.346 
Gender_x*Safety_Equi 1 1.245     1.254     
Speeding_x 2 0.863 0.610 0.724 0.825 0.866 0.607 
Speeding_x 1 0.409 0.530 0.527 0.368 0.402 0.573 
Contributing_Cause_x 4 1.605 1.296   1.891 2.008 1.542 
Contributing_Cause_x 3 1.748 1.432   2.227 2.302 1.987 
Contributing_Cause_x 2 1.593 1.622   1.786 1.645 1.858 
At_Fault_driver_x   0.538 0.531 0.589 0.517 0.530 0.510 
Red_light_running_x     1.333 1.439       
Residence_Code_x   1.175 1.286 1.587       
Physical_Defects_x   1.535 1.511 1.741 1.497 1.531   
Harmful_Event_Group_ 7 1.097 1.091 0.982 1.132 1.149 1.101 
Harmful_Event_Group_ 6 1.810 2.174 2.578 1.840 1.879 1.636 
Harmful_Event_Group_ 5 0.779 0.724 0.540 0.836 0.904 0.810 
Harmful_Event_Group_ 4 2.242 2.228 2.304 2.026 2.306 1.806 
Harmful_Event_Group_ 3 1.784 1.812 1.649 1.790 1.818 1.754 
Harmful_Event_Group_ 2 2.875 2.263 2.188 3.211 4.054 2.068 
Vehicle_Maneuver_x 4     1.100       
Vehicle_Maneuver_x 3     1.258       
Vehicle_Maneuver_x 2     0.760       
Type_of_Vehicle_x 5 0.756 0.654 0.597 0.798 0.824 0.708 
Type_of_Vehicle_x 4 1.050 1.273 1.186 0.965 0.926 1.352 
Type_of_Vehicle_x 3 0.357 0.325 0.366 0.362 0.371 0.273 
Type_of_Vehicle_x 2 0.820 0.780 0.811 0.830 0.872 0.742 
point_impact_x   1.091 1.187 1.524 1.094   1.595 
point_imp*Speeding_x 2 1.240 1.457   1.093     
point_imp*Speeding_x 1 1.412 1.507   .      
Off_Roadway   0.613     0.739 0.716   
Off_Roadw*Speeding_x 2 0.783     0.896 0.944   
Off_Roadw*Speeding_x 1 1.289     1.517 1.388   
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Variable Level Overall Inters Signal Segment Pure 
Segment 

Non- 
signal 

Off_Roadw*Multivehic 1 2.033           
nWork_Area_x 3 0.826     0.829     
nWork_Area_x 2 0.750     0.742     
Private_vehicle_use_         1.565     
Private_ve*nAVGTFACT         0.975     
Multivehicle 1 0.469           
Intersect*Multivehic 1 1.476           
Speed_limit_x 1 0.676 0.657 0.709 0.657 0.677 0.622 
ADT_PER_LANE   0.972     0.960 0.948 0.972 
nAVGTFACT   1.011     1.034 1.012   
LIGHTING Y 1.331     1.403     
LIGHTING P 3.506     3.710     
Traffic_Control 3 1.128     1.236     
Traffic_Control 2 0.997     1.319     
Access_class 9 1.030 1.009 1.040       
Access_class 7 0.781 0.677 0.622       
Access_class 6 0.833 0.756 0.649       
Access_class 5 0.879 0.847 0.836       
nrural_urban   0.879 0.744 0.808 0.816 0.916 0.649 
nType_of_Shoulder 3 1.089 1.114 1.162       
nType_of_Shoulder 2 0.967 0.973 0.954       
Lane_width 4 0.827 0.766 0.812 0.843     
Lane_width 3 0.815 0.802 0.677 0.874     
Lane_width 2 0.810 0.850 0.801 0.818     
roadway_curve   1.306     1.391 1.339 1.510 
Sidewalk_width_group 3 0.791 0.723 0.665 0.801 0.831 0.762 
Sidewalk_width_group 2 0.851 0.774 0.696 0.890 0.910 0.833 
LIGHTCDE Y 1.129 1.162   1.121 1.053   
LIGHTCDE P 0.821 0.873   0.837 0.770   
Type_Friction_Course 9 0.975 0.995 0.916 0.992 0.948   
Type_Friction_Course 5 0.831 0.726 0.539 0.903 0.935   
Type_Friction_Course 4 0.918 0.976 0.988 0.929 0.888   
Type_Friction_Course 1 0.736 0.737 0.687 0.754 0.723   
Intersection   0.831           
Intersect*nrural_urb   0.862           
Skid_Resistance   1.198 1.143   1.256 1.305   
nrural_ur*Skid_Resis   0.919 0.969   0.868 0.825   
AUX_Lane_Num 3       1.075   1.190 
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Variable Level Overall Inters Signal Segment Pure 
Segment 

Non- 
signal 

AUX_Lane_Num 2       0.882   0.860 
AUX_Lane_Num 1       1.054   1.136 
Day_of_Week   0.906           
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APPENDIX E:  INJURY SEVERITY MODELS’ FINAL ANALYSIS – 
CRASH TYPES MODELS 
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Injury Severity Regression Model 
(for Driver Involvements in All Rear-end Crashes) 

 

Parameter   DF Estimate 
Standard 

Error 
Wald chi-

square 
Pr > chi-

square 
Intercept   1 -0.5609 0.2769 4.1035 0.0428 

Driver_Ageg_Group_x 5 1 0.0581 0.2228 0.0679 0.7944 

Driver_Ageg_Group_x 4 1 0.2053 0.1141 3.2355 0.0721 

Driver_Ageg_Group_x 3 1 -0.4641 0.1025 20.5118 <.0001 

Driver_Ageg_Group_x 2 1 -0.4699 0.1148 16.7433 <.0001 

Gender_x   1 0.0618 0.1582 0.1526 0.696 

Safety_Equipment_x 1 1 -1.3669 0.1075 161.5832 <.0001 

Speeding_x 2 1 -0.4582 0.0906 25.5751 <.0001 

Speeding_x 1 1 -0.8950 0.0804 123.9842 <.0001 

At_Fault_driver_x   1 -0.5293 0.0743 50.7892 <.0001 

Residence_Code_x   1 0.5711 0.1947 8.6043 0.0034 

Physical_Defects_x   1 0.7787 0.1619 23.1391 <.0001 

Ejected_x   1 0.5970 0.2415 6.1132 0.0134 

Gender_x*Safety_Equi 1 1 0.4635 0.1720 7.2598 0.0071 

Type_of_Vehicle_x 5 1 -0.0584 0.3503 0.0278 0.8676 

Type_of_Vehicle_x 4 1 0.8410 0.2455 11.7381 0.0006 

Type_of_Vehicle_x 3 1 -1.2242 0.2871 18.1846 <.0001 

Type_of_Vehicle_x 2 1 -0.1810 0.0753 5.7833 0.0162 

nrural_urban   1 -0.2087 0.0672 9.6569 0.0019 

nWork_Area_x 3 1 -0.2607 0.2397 1.1825 0.2768 

nWork_Area_x 2 1 -0.6349 0.2225 8.1401 0.0043 

Concrete_Surface   1 -0.7592 0.3272 5.3832 0.0203 

Speed_limit_x 1 1 -0.5212 0.0817 40.6879 <.0001 

ADT_PER_LANE   1 -0.0548 0.0126 19.0552 <.0001 

Skid_Resistance   1 0.2713 0.0703 14.9093 0.0001 

Lane_width 4 1 -0.2847 0.1128 6.3714 0.0116 

Lane_width 3 1 -0.4168 0.1810 5.3007 0.0213 

Lane_width 2 1 -0.3893 0.1287 9.1579 0.0025 

LIGHTCDE Y 1 0.3065 0.1059 8.3814 0.0038 

LIGHTCDE P 1 -0.2811 0.1128 6.2051 0.0127 

LIGHTING Y 1 0.2673 0.2259 1.4004 0.2367 

LIGHTING P 1 1.3902 0.5775 5.7949 0.0161 

Access_class 9 1 0.0495 0.0963 0.2636 0.6077 

Access_class 7 1 -0.2655 0.1703 2.4309 0.119 
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Parameter   DF Estimate 
Standard 

Error 
Wald chi-

square 
Pr > chi-

square 
Access_class 6 1 -0.2927 0.1389 4.4397 0.0351 

Access_class 5 1 -0.1622 0.0811 4.0012 0.0455 

Type_Friction_Course 9 1 0.0364 0.0795 0.2093 0.6473 

Type_Friction_Course 5 1 -0.2273 0.1865 1.4860 0.2228 

Type_Friction_Course 4 1 -0.2150 0.0898 5.7367 0.0166 

Type_Friction_Course 1 1 -0.3308 0.1519 4.7430 0.0294 

Sidewalk_width_group 3 1 -0.2559 0.0978 6.8516 0.0089 

Sidewalk_width_group 2 1 -0.1896 0.0775 5.9773 0.0145 

Day_of_Week   1 -0.2748 0.0798 11.8693 0.0006 
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Injury Severity Regression Model 
(for Driver Involvements in Rear-end Crashes at Signalized Intersections) 

 

Parameter   DF Estimate 
Standard 

Error 
Wald chi-

square 
Pr > chi-

square 
Intercept   1 -1.2322 0.4810 6.5637 0.0104 

driver_ageg_group_x 4 1 0.2493 0.1836 1.8426 0.1746 

driver_ageg_group_x 3 1 -0.3831 0.1969 3.7870 0.0517 

driver_ageg_group_x 2 1 -0.4931 0.2351 4.3997 0.0359 

gender_x   1 -0.4110 0.1171 12.3059 0.0005 

Safety_Equipment_x 1 1 -1.2121 0.1480 67.0601 <.0001 

Speeding_x 2 1 -0.5367 0.1767 9.2249 0.0024 
Speeding_x 1 1 -1.1693 0.1619 52.1472 <.0001 
At_Fault_driver_x   1 -0.5669 0.1461 15.0499 0.0001 
Residence_Code_x   1 0.9107 0.4177 4.7539 0.0292 
Physical_Defects_x   1 0.8145 0.2718 8.9801 0.0027 

Ejected_x   1 1.4877 0.3679 16.3557 <.0001 

Speed_limit_x 1 1 -0.5289 0.1411 14.0420 0.0002 

Lane_width 4 1 -0.3941 0.2031 3.7674 0.0523 

Lane_width 3 1 -0.7658 0.3690 4.3075 0.0379 

Lane_width 2 1 -0.3597 0.2160 2.7722 0.0959 

Sidewalk_width_group 3 1 -0.4098 0.1654 6.1411 0.0132 

Sidewalk_width_group 2 1 -0.5384 0.1348 15.9391 <.0001 
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Injury Severity Regression Model 
(for Driver Involvements in Rear-end Crashes at Unsignalized Intersections) 

 

Parameter   DF Estimate 
Standard 

Error 
Wald chi-

square 
Pr > chi-

square 
Intercept   1 -0.2571 0.3404 0.5705 0.4501 

Driver_Ageg_Group_x 5 1 -0.3890 0.6039 0.4150 0.5194 

Driver_Ageg_Group_x 4 1 0.4891 0.2412 4.1121 0.0426 

Driver_Ageg_Group_x 3 1 -0.8625 0.2814 9.3932 0.0022 

Driver_Ageg_Group_x 2 1 -0.3653 0.2496 2.1410 0.1434 

Gender_x   1 -0.3844 0.3883 0.9799 0.3222 

Safety_Equipment_x 1 1 -1.7666 0.2542 48.3044 <.0001 

Speeding_x 2 1 -0.2897 0.2012 2.0734 0.1499 

Speeding_x 1 1 -0.6692 0.1834 13.3127 0.0003 

Gender_x*Safety_Equi 1 1 1.1815 0.4221 7.8361 0.0051 

point_impact_x   1 1.0508 0.4958 4.4909 0.0341 

Type_of_Vehicle_x 5 1 0.1979 0.7460 0.0704 0.7907 

Type_of_Vehicle_x 4 1 1.0859 0.3747 8.3978 0.0038 

Type_of_Vehicle_x 3 1 -1.6438 0.7451 4.8667 0.0274 

Type_of_Vehicle_x 2 1 -0.3251 0.1820 3.1914 0.074 

nrural_urban   1 -0.5334 0.1577 11.4404 0.0007 

Speed_limit_x 1 1 -0.7741 0.1666 21.5910 <.0001 

ADT_PER_LANE   1 -0.0614 0.0294 4.3714 0.0365 

LIGHTCDE Y 1 0.6465 0.2384 7.3517 0.0067 

LIGHTCDE P 1 -0.1629 0.2673 0.3715 0.5422 
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Injury Severity Regression Model 
(for Driver Involvements in Rear-end Crashes at Unsignalized Intersections and Road Segments) 

 

Parameter   DF Estimate 
Standard 

Error 
Wald chi-

square 
Pr > chi-

square 
Intercept   1 -0.0586 0.2851 0.0423 0.8371 

Driver_Ageg_Group_x 5 1 -0.1449 0.3322 0.1903 0.6627 

Driver_Ageg_Group_x 4 1 0.0809 0.1539 0.2761 0.5993 

Driver_Ageg_Group_x 3 1 -0.5358 0.1295 17.1241 <.0001 

Driver_Ageg_Group_x 2 1 -0.4619 0.1411 10.7245 0.0011 
Gender_x   1 0.00229 0.2060 0.0001 0.9911 

Safety_Equipment_x 1 1 -1.4842 0.1382 115.2678 <.0001 

Speeding_x 2 1 -0.3941 0.1154 11.6691 0.0006 

Speeding_x 1 1 -0.7772 0.0988 61.8782 <.0001 

At_Fault_driver_x   1 -0.5197 0.0929 31.2662 <.0001 

Physical_Defects_x   1 0.7982 0.2214 13.0041 0.0003 

Gender_x*Safety_Equi 1 1 0.6460 0.2238 8.3343 0.0039 

Type_of_Vehicle_x 5 1 -0.1438 0.4673 0.0948 0.7582 

Type_of_Vehicle_x 4 1 1.2934 0.2032 40.5131 <.0001 

Type_of_Vehicle_x 3 1 -1.2014 0.3354 12.8335 0.0003 

Type_of_Vehicle_x 2 1 -0.1621 0.0969 2.8026 0.0941 

nrural_urban   1 -0.2350 0.0862 7.4361 0.0064 

nWork_Area_x 3 1 -0.1121 0.2744 0.1670 0.6828 

nWork_Area_x 2 1 -0.7976 0.3132 6.4875 0.0109 

Concrete_Surface   1 -0.8725 0.4263 4.1899 0.0407 

Speed_limit_x 1 1 -0.5945 0.1028 33.4161 <.0001 

ADT_PER_LANE   1 -0.0738 0.0160 21.1855 <.0001 

nAVGTFACT   1 0.0189 0.00962 3.8729 0.0491 

Skid_Resistance   1 0.3424 0.0901 14.4380 0.0001 

LIGHTCDE Y 1 0.3749 0.1342 7.8109 0.0052 

LIGHTCDE P 1 -0.2934 0.1460 4.0366 0.0445 

LIGHTING Y 1 0.4732 0.2859 2.7401 0.0979 

LIGHTING P 1 1.5979 0.8186 3.8106 0.0509 

Type_Friction_Course 9 1 0.0578 0.1002 0.3320 0.5645 

Type_Friction_Course 5 1 -0.0122 0.2101 0.0034 0.9536 

Type_Friction_Course 4 1 -0.2694 0.1112 5.8701 0.0154 

Type_Friction_Course 1 1 -0.3751 0.1838 4.1645 0.0413 
Sidewalk_width_group 3 1 -0.3608 0.1276 7.9937 0.0047 
Sidewalk_width_group 2 1 -0.1504 0.0992 2.2978 0.1296 
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Parameter   DF Estimate 
Standard 

Error 
Wald chi-

square 
Pr > chi-

square 
Day_of_Week   1 -0.3330 0.1064 9.7889 0.0018 
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Injury Severity Regression Model 
(for Driver Involvements in Rear-end Crashes on Road Segments) 

 

Parameter   DF Estimate 
Standard 

Error 
Wald chi-

square 
Pr > chi-

square 
Intercept   1 -1.1824 0.4549 6.7575 0.0093 

Driver_Ageg_Group_x 5 1 -0.0901 0.3984 0.0512 0.821 
Driver_Ageg_Group_x 4 1 -0.1790 0.2026 0.7811 0.3768 
Driver_Ageg_Group_x 3 1 -0.4782 0.1467 10.6235 0.0011 

Driver_Ageg_Group_x 2 1 -0.5345 0.1706 9.8162 0.0017 

Gender_x   1 0.4987 0.1010 24.3724 <.0001 

Safety_Equipment_x 1 1 -1.1835 0.1321 80.2867 <.0001 

Speeding_x 2 1 -0.3882 0.1365 8.0891 0.0045 

Speeding_x 1 1 -0.8530 0.1174 52.7805 <.0001 

At_Fault_driver_x   1 -0.6034 0.1113 29.3683 <.0001 

Physical_Defects_x   1 0.8725 0.2534 11.8543 0.0006 

Type_of_Vehicle_x 5 1 -0.0169 0.6027 0.0008 0.9776 

Type_of_Vehicle_x 4 1 1.5337 0.2351 42.5751 <.0001 

Type_of_Vehicle_x 3 1 -0.6172 0.4428 1.9428 0.1634 

Type_of_Vehicle_x 2 1 -0.0950 0.1148 0.6855 0.4077 

Private_vehicle_use_   1 0.7025 0.3334 4.4394 0.0351 

Concrete_Surface   1 -1.5191 0.7148 4.5168 0.0336 

Speed_limit_x 1 1 -0.6768 0.1129 35.9072 <.0001 

ADT_PER_LANE   1 -0.0769 0.0189 16.5112 <.0001 

nAVGTFACT   1 0.0312 0.0105 8.7900 0.003 

Skid_Resistance   1 0.4331 0.1069 16.4154 <.0001 

LIGHTCDE Y 1 0.2822 0.1593 3.1393 0.0764 

LIGHTCDE P 1 -0.3241 0.1714 3.5755 0.0586 

Type_Friction_Course 9 1 0.0904 0.1177 0.5904 0.4423 

Type_Friction_Course 5 1 0.0621 0.2376 0.0682 0.7939 

Type_Friction_Course 4 1 -0.3725 0.1346 7.6633 0.0056 

Type_Friction_Course 1 1 -0.5271 0.2363 4.9764 0.0257 

Day_of_Week   1 -0.3308 0.1263 6.8613 0.0088 
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Injury Severity Regression Model 
(for Driver Involvements in All Angle Crashes) 

 

Parameter   DF Estimate 
Standard 

Error 
Wald chi-

square 
Pr > chi-

square 
Intercept   1 -1.2181 0.2705 20.2723 <.0001 

Driver_Ageg_Group_x 5 1 0.7416 0.1282 33.4500 <.0001 
Driver_Ageg_Group_x 4 1 0.5088 0.0915 30.9554 <.0001 
Driver_Ageg_Group_x 3 1 -0.1601 0.0975 2.6946 0.1007 
Driver_Ageg_Group_x 2 1 -0.0588 0.1004 0.3430 0.5581 
Gender_x   1 0.3691 0.0630 34.3241 <.0001 
Safety_Equipment_x 1 1 -1.2004 0.0849 200.0428 <.0001 
Speeding_x 2 1 -0.3671 0.1162 9.9712 0.0016 

Speeding_x 1 1 -0.4457 0.0714 39.0068 <.0001 

Contributing_Cause_x 4 1 0.3932 0.0944 17.3388 <.0001 

Contributing_Cause_x 3 1 0.9424 0.3109 9.1864 0.0024 

Contributing_Cause_x 2 1 0.5754 0.0974 34.9059 <.0001 

At_Fault_driver_x   1 -0.7578 0.0851 79.3744 <.0001 

Red_light_running_x   1 0.2818 0.1291 4.7622 0.0291 

Physical_Defects_x   1 0.4373 0.1894 5.3301 0.021 

Ejected_x   1 1.4262 0.1727 68.2152 <.0001 

Off_Roadway   1 0.4553 0.2266 4.0393 0.0445 

point_impact_x   1 0.5828 0.0695 70.3902 <.0001 

Type_of_Vehicle_x 5 1 -0.3793 0.3316 1.3085 0.2527 

Type_of_Vehicle_x 4 1 0.0925 0.1934 0.2287 0.6325 

Type_of_Vehicle_x 3 1 -1.3706 0.2995 20.9486 <.0001 

Type_of_Vehicle_x 2 1 -0.2320 0.0774 8.9798 0.0027 

nrural_urban   1 -0.3729 0.0643 33.5794 <.0001 

Intersection   1 0.2742 0.0711 14.8783 0.0001 

Speed_limit_x 1 1 -0.3817 0.0680 31.5207 <.0001 

ADT_PER_LANE   1 -0.0320 0.0119 7.2040 0.0073 

Lane_width 4 1 -0.3058 0.1155 7.0128 0.0081 

Lane_width 3 1 -0.1802 0.1464 1.5157 0.2183 

Lane_width 2 1 -0.1961 0.1155 2.8834 0.0895 

Shoulder_width 4 1 -0.1775 0.1570 1.2777 0.2583 

Shoulder_width 3 1 -0.4323 0.2087 4.2921 0.0383 

Shoulder_width 2 1 -0.4580 0.2083 4.8349 0.0279 

Access_class 9 1 -0.0989 0.0870 1.2922 0.2556 

Access_class 7 1 -0.4734 0.1416 11.1782 0.0008 

Access_class 6 1 -0.3644 0.1191 9.3670 0.0022 
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Parameter   DF Estimate 
Standard 

Error 
Wald chi-

square 
Pr > chi-

square 
Access_class 5 1 -0.2799 0.0777 12.9794 0.0003 
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Injury Severity Regression Model 
(for Driver Involvements in Angle Crashes at Signalized Intersections) 

 

Parameter   DF Estimate 
Standard 

Error 
Wald chi-

square 
Pr > chi-

square 
Intercept   1 -0.9624 0.2321 17.2015 <.0001 

Driver_Ageg_Group_x 5 1 0.9097 0.2269 16.0807 <.0001 

Driver_Ageg_Group_x 4 1 0.3669 0.1724 4.5291 0.0333 

Driver_Ageg_Group_x 3 1 -0.4071 0.1853 4.8273 0.028 
Driver_Ageg_Group_x 2 1 -0.0171 0.1763 0.0094 0.9227 
Gender_x   1 0.5176 0.1093 22.4411 <.0001 

Safety_Equipment_x 1 1 -1.1770 0.1510 60.7355 <.0001 
Speeding_x 2 1 -0.2305 0.1986 1.3470 0.2458 
Speeding_x 1 1 -0.3713 0.1188 9.7593 0.0018 
Ejected_x   1 1.6944 0.2564 43.6869 <.0001 
point_impact_x   1 0.6300 0.1320 22.7801 <.0001 

nrural_urban   1 -0.3107 0.1147 7.3375 0.0068 

Speed_limit_x 1 1 -0.4499 0.1219 13.6209 0.0002 

nType_of_Shoulder 3 1 0.5071 0.1468 11.9269 0.0006 

nType_of_Shoulder 2 1 -0.0523 0.1783 0.0860 0.7694 

Access_class 9 1 -0.1286 0.1591 0.6529 0.4191 

Access_class 7 1 -0.5482 0.2402 5.2083 0.0225 

Access_class 6 1 -1.0192 0.2721 14.0283 0.0002 

Access_class 5 1 -0.3595 0.1398 6.6163 0.0101 

Sidewalk_width_group 3 1 -0.5469 0.1668 10.7518 0.001 

Sidewalk_width_group 2 1 -0.3290 0.1382 5.6624 0.0173 
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Injury Severity Regression Model 
(for Driver Involvements in Angle Crashes at Unsignalized Intersections) 

 

Parameter   DF Estimate 
Standard 

Error 
Wald chi-

square 
Pr > chi-

square 
Intercept   1 -1.8080 0.3197 31.9845 <.0001 

Driver_Ageg_Group_x 5 1 0.9699 0.1837 27.8763 <.0001 
Driver_Ageg_Group_x 4 1 0.6886 0.1354 25.8591 <.0001 
Driver_Ageg_Group_x 3 1 0.0559 0.1504 0.1379 0.7103 

Driver_Ageg_Group_x 2 1 0.0335 0.1538 0.0473 0.8278 

Gender_x   1 0.4217 0.0953 19.5616 <.0001 

Safety_Equipment_x 1 1 -1.1885 0.1284 85.6882 <.0001 

Speeding_x 2 1 -0.7903 0.2034 15.0902 0.0001 

Speeding_x 1 1 -0.4986 0.1183 17.7655 <.0001 

Contributing_Cause_x 4 1 0.5735 0.1588 13.0474 0.0003 

Contributing_Cause_x 3 1 1.7850 0.4678 14.5627 0.0001 

Contributing_Cause_x 2 1 0.8968 0.1497 35.9086 <.0001 

At_Fault_driver_x   1 -1.1702 0.1290 82.3447 <.0001 

Ejected_x   1 1.6699 0.2129 61.5207 <.0001 

point_impact_x   1 0.7315 0.1046 48.8672 <.0001 

Private_vehicle_use_   1 0.7028 0.2748 6.5395 0.0106 

nrural_urban   1 -0.5616 0.0982 32.7103 <.0001 

Speed_limit_x 1 1 -0.4990 0.0984 25.7142 <.0001 

Skid_Resistance   1 0.2153 0.1048 4.2163 0.04 
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Injury Severity Regression Model 
(for Driver Involvements in Angle Crashes at Unsignalized Intersections and Road Segments) 

 

Parameter   DF Estimate 
Standard 

Error 
Wald chi-

square 
Pr > chi-

square 
Intercept   1 -1.6527 0.2929 31.8351 <.0001 

Driver_Ageg_Group_x 5 1 0.7545 0.1570 23.1013 <.0001 

Driver_Ageg_Group_x 4 1 0.6348 0.1087 34.0811 <.0001 

Driver_Ageg_Group_x 3 1 -0.0384 0.1157 0.1101 0.74 

Driver_Ageg_Group_x 2 1 -0.0640 0.1230 0.2711 0.6026 

Gender_x   1 0.3395 0.0771 19.4130 <.0001 
Safety_Equipment_x 1 1 -1.1925 0.1036 132.5249 <.0001 
Speeding_x 2 1 -0.4702 0.1455 10.4413 0.0012 
Speeding_x 1 1 -0.5226 0.0895 34.1280 <.0001 
Contributing_Cause_x 4 1 0.6367 0.1158 30.2482 <.0001 

Contributing_Cause_x 3 1 1.3620 0.3547 14.7456 0.0001 

Contributing_Cause_x 2 1 0.7418 0.1152 41.4444 <.0001 

At_Fault_driver_x   1 -0.9381 0.1006 86.9271 <.0001 

Ejected_x   1 1.4175 0.2020 49.2481 <.0001 

Off_Roadway   1 0.5724 0.2543 5.0651 0.0244 
point_impact_x   1 0.6128 0.0840 53.2458 <.0001 

Type_of_Vehicle_x 5 1 -0.2032 0.3808 0.2847 0.5936 

Type_of_Vehicle_x 4 1 0.0425 0.2237 0.0360 0.8495 

Type_of_Vehicle_x 3 1 -1.3469 0.3481 14.9759 0.0001 

Type_of_Vehicle_x 2 1 -0.2883 0.0947 9.2703 0.0023 

nrural_urban   1 -0.4542 0.0796 32.5285 <.0001 

Intersection   1 0.3333 0.0780 18.2468 <.0001 

Speed_limit_x 1 1 -0.3904 0.0831 22.0720 <.0001 

Access_class 9 1 -0.1155 0.1050 1.2094 0.2714 

Access_class 7 1 -0.4794 0.1774 7.3042 0.0069 

Access_class 6 1 -0.1724 0.1366 1.5926 0.207 

Access_class 5 1 -0.2852 0.0953 8.9537 0.0028 

Vision_Obstructed 4 1 -0.1805 0.2797 0.4164 0.5187 

Vision_Obstructed 3 1 0.2046 0.1533 1.7802 0.1821 

Vision_Obstructed 2 1 0.5592 0.1890 8.7565 0.0031 
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Injury Severity Regression Model 
(for Driver Involvements in Angle Crashes on Road Segments) 

 

Parameter   DF Estimate 
Standard 

Error 
Wald chi-

square 
Pr > chi-

square 
Intercept   1 -1.1764 0.2316 25.8075 <.0001 
Driver_Ageg_Group_x 5 1 0.4013 0.3171 1.6011 0.2057 

Driver_Ageg_Group_x 4 1 0.6345 0.1846 11.8165 0.0006 

Driver_Ageg_Group_x 3 1 -0.1709 0.1814 0.8879 0.3461 

Driver_Ageg_Group_x 2 1 -0.2035 0.2072 0.9647 0.326 

Gender_x   1 0.2763 0.1290 4.5863 0.0322 
Safety_Equipment_x 1 1 -1.2254 0.1701 51.8960 <.0001 
Speeding_x 2 1 -0.1402 0.2108 0.4421 0.5061 

Speeding_x 1 1 -0.6231 0.1396 19.9152 <.0001 

Contributing_Cause_x 4 1 0.6149 0.1734 12.5759 0.0004 
Contributing_Cause_x 3 1 0.8473 0.5462 2.4065 0.1208 
Contributing_Cause_x 2 1 0.4525 0.1882 5.7823 0.0162 

At_Fault_driver_x   1 -0.6529 0.1643 15.7910 <.0001 

Ejected_x   1 1.2973 0.2903 19.9694 <.0001 

point_impact_x   1 0.3934 0.1436 7.5065 0.0061 

Type_of_Vehicle_x 5 1 -0.3107 0.6707 0.2146 0.6432 

Type_of_Vehicle_x 4 1 0.0415 0.3233 0.0164 0.898 

Type_of_Vehicle_x 3 1 -1.4686 0.5251 7.8220 0.0052 

Type_of_Vehicle_x 2 1 -0.3208 0.1598 4.0311 0.0447 

nrural_urban   1 -0.4065 0.1292 9.9020 0.0017 

Speed_limit_x 1 1 -0.2984 0.1418 4.4265 0.0354 

Vision_Obstructed 4 1 -0.6491 0.6432 1.0185 0.3129 

Vision_Obstructed 3 1 0.3976 0.2497 2.5357 0.1113 

Vision_Obstructed 2 1 1.2684 0.2453 26.7284 <.0001 



327 

Injury Severity Regression Model 
(for Driver Involvements in All Left turn Crashes) 

 

Parameter   DF Estimate 
Standard 

Error 
Wald chi-

square 
Pr > chi-

square 
Intercept   1 -2.5220 0.5620 20.1381 <.0001 

Driver_Ageg_Group_x 5 1 0.7413 0.1736 18.2340 <.0001 

Driver_Ageg_Group_x 4 1 0.4626 0.1316 12.3521 0.0004 

Driver_Ageg_Group_x 3 1 -0.1562 0.1487 1.1041 0.2934 

Driver_Ageg_Group_x 2 1 -0.2783 0.1610 2.9897 0.0838 

Gender_x   1 0.4330 0.0955 20.5599 <.0001 

Safety_Equipment_x 1 1 -1.1882 0.1287 85.2174 <.0001 

At_Fault_driver_x   1 -0.5476 0.0953 33.0194 <.0001 

Ejected_x   1 1.7024 0.3120 29.7663 <.0001 

Off_Roadway   1 1.3012 0.5207 6.2457 0.0124 

point_impact_x   1 0.4245 0.1230 11.9062 0.0006 

Type_of_Vehicle_x 5 1 -1.1163 0.7713 2.0947 0.1478 
Type_of_Vehicle_x 4 1 -0.5592 0.4039 1.9172 0.1662 
Type_of_Vehicle_x 3 1 -1.1532 0.4460 6.6845 0.0097 
Type_of_Vehicle_x 2 1 -0.4315 0.1232 12.2709 0.0005 
Median_Type 2 1 -0.3607 0.1576 5.2373 0.0221 
Speed_limit_x 1 1 -0.4257 0.1059 16.1603 <.0001 
nAVGTFACT   1 0.0283 0.0114 6.1675 0.013 

Skid_Resistance   1 0.2048 0.1020 4.0348 0.0446 

LIGHTCDE Y 1 0.4156 0.1717 5.8621 0.0155 

LIGHTCDE P 1 -0.1645 0.1627 1.0225 0.3119 

Access_class 9 1 0.2216 0.1350 2.6947 0.1007 

Access_class 7 1 -0.8372 0.2586 10.4775 0.0012 

Access_class 6 1 -0.0858 0.2122 0.1635 0.6859 

Access_class 5 1 -0.1263 0.1177 1.1519 0.2832 
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Injury Severity Regression Model 
(for Driver Involvements in Left turn Crashes at Signalized Intersections) 

 

Parameter   DF Estimate 
Standard 

Error 
Wald chi-

square 
Pr > chi-

square 
Intercept   1 -0.8287 0.2662 9.6884 0.0019 

Driver_Ageg_Group_x 5 1 0.5869 0.2597 5.1059 0.0238 

Driver_Ageg_Group_x 4 1 0.4357 0.1971 4.8876 0.027 

Driver_Ageg_Group_x 3 1 -0.1036 0.2146 0.2330 0.6293 

Driver_Ageg_Group_x 2 1 -0.2946 0.2419 1.4832 0.2233 

Gender_x   1 0.4606 0.1412 10.6489 0.0011 

Safety_Equipment_x 1 1 -1.1705 0.1944 36.2387 <.0001 

At_Fault_driver_x   1 -0.6279 0.1394 20.2978 <.0001 

Ejected_x   1 1.9090 0.4276 19.9284 <.0001 

Type_of_Vehicle_x 5 1 -12.9334 519.3 0.0006 0.9801 

Type_of_Vehicle_x 4 1 -0.7414 0.5932 1.5623 0.2113 

Type_of_Vehicle_x 3 1 -2.0175 1.0146 3.9537 0.0468 

Type_of_Vehicle_x 2 1 -0.4209 0.1823 5.3272 0.021 

Speed_limit_x 1 1 -0.4102 0.1617 6.4303 0.0112 
Access_class 9 1 0.3932 0.2033 3.7395 0.0531 
Access_class 7 1 -1.5053 0.5251 8.2187 0.0041 
Access_class 6 1 0.0267 0.2614 0.0104 0.9187 

Access_class 5 1 -0.1405 0.1693 0.6889 0.4065 
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Injury Severity Regression Model 
(for Driver Involvements in Left turn Crashes at Unsignalized Intersections) 

 

Parameter   DF Estimate 
Standard 

Error 
Wald chi-

square 
Pr > chi-

square 
Intercept   1 -1.9603 0.3309 35.0867 <.0001 

Driver_Ageg_Group_x 5 1 0.9643 0.1846 27.2879 <.0001 

Driver_Ageg_Group_x 4 1 0.6824 0.1354 25.4021 <.0001 

Driver_Ageg_Group_x 3 1 0.0481 0.1506 0.1020 0.7494 

Driver_Ageg_Group_x 2 1 0.0218 0.1543 0.0200 0.8876 

Gender_x   1 0.4241 0.0956 19.6901 <.0001 

Safety_Equipment_x 1 1 -1.1851 0.1290 84.3853 <.0001 

Speeding_x 2 1 -0.7957 0.2043 15.1755 <.0001 

Speeding_x 1 1 -0.4932 0.1182 17.4151 <.0001 

Contributing_Cause_x 4 1 0.6149 0.1589 14.9704 0.0001 

Contributing_Cause_x 3 1 1.7911 0.4703 14.5039 0.0001 

Contributing_Cause_x 2 1 0.9028 0.1504 36.0398 <.0001 

At_Fault_driver_x   1 -1.1768 0.1295 82.6209 <.0001 

Ejected_x   1 1.6846 0.2142 61.8763 <.0001 

point_impact_x   1 0.7471 0.1053 50.3600 <.0001 

Private_vehicle_use_   1 0.6991 0.2747 6.4741 0.0109 

nrural_urban   1 -0.5700 0.0993 32.9765 <.0001 

Speed_limit_x 1 1 -0.4737 0.0995 22.6644 <.0001 

Skid_Resistance   1 0.2444 0.1057 5.3454 0.0208 
AUX_Lane_Num 3 1 0.1856 0.1799 1.0639 0.3023 

AUX_Lane_Num 2 1 -0.3696 0.1617 5.2268 0.0222 

AUX_Lane_Num 1 1 0.1951 0.1053 3.4316 0.064 

Type_Friction_Course 9 1 0.1983 0.1174 2.8520 0.0913 

Type_Friction_Course 5 1 0.4085 0.2168 3.5489 0.0596 

Type_Friction_Course 4 1 0.0185 0.1193 0.0241 0.8766 

Type_Friction_Course 1 1 -0.3609 0.2340 2.3786 0.123 
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Injury Severity Regression Model 
(for Driver Involvements in Left turn Crashes at Unsignalized Intersections and Road Segments) 

 

Parameter   DF Estimate 
Standard 

Error 
Wald chi-

square 
Pr > chi-

square 
Intercept   1 -2.3565 0.6209 14.4062 0.0001 
Driver_Ageg_Group_x 5 1 0.9031 0.2320 15.1473 <.0001 

Driver_Ageg_Group_x 4 1 0.5620 0.1756 10.2410 0.0014 

Driver_Ageg_Group_x 3 1 -0.1726 0.2089 0.6830 0.4085 

Driver_Ageg_Group_x 2 1 -0.1906 0.2129 0.8015 0.3707 

Gender_x   1 0.5075 0.1269 16.0008 <.0001 

Safety_Equipment_x 1 1 -1.1760 0.1710 47.3054 <.0001 
At_Fault_driver_x   1 -0.4866 0.1333 13.3262 0.0003 
Ejected_x   1 1.3939 0.3379 17.0162 <.0001 

Off_Roadway   1 1.3493 0.5954 5.1364 0.0234 

point_impact_x   1 0.5528 0.1482 13.9205 0.0002 

nrural_urban   1 -0.3368 0.1294 6.7732 0.0093 

Median_Type 2 1 -0.6033 0.1703 12.5484 0.0004 

Speed_limit_x 1 1 -0.5336 0.1329 16.1343 <.0001 
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Injury Severity Regression Model 
(for Driver Involvements in Left turn Crashes at Road Segments) 

 

Parameter   DF Estimate 
Standard 

Error 
Wald chi-

square 
Pr > chi-

square 
Intercept   1 -2.8431 0.4916 33.4455 <.0001 

Gender_x   1 0.9332 0.2414 14.9487 0.0001 

Safety_Equipment_x 1 1 -0.9833 0.3034 10.5069 0.0012 

Ejected_x   1 2.1826 0.6625 10.8553 0.001 

point_impact_x   1 0.8141 0.2692 9.1460 0.0025 

Access_class 9 1 -0.0520 0.3133 0.0275 0.8683 

Access_class 7 1 -1.7441 0.7461 5.4647 0.0194 

Access_class 6 1 -0.9079 0.3747 5.8707 0.0154 

Access_class 5 1 -0.6067 0.2942 4.2533 0.0392 

Day_of_Week   1 0.5676 0.2635 4.6414 0.0312 
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Injury Severity Regression Model 
(for Driver Involvements in All Fixed Object Crashes) 

 

Parameter   DF Estimate 
Standard 

Error 
Wald chi-

square 
Pr > chi-

square 
Intercept   1 -0.7738 0.1778 18.9478 <.0001 
Safety_Equipment_x 1 1 -0.9289 0.0970 91.6141 <.0001 

Speeding_x 2 1 0.1689 0.1422 1.4115 0.2348 

Speeding_x 1 1 -0.5416 0.1074 25.4412 <.0001 

Contr ibuting_Cause_x 4 1 0.8446 0.1264 44.6827 <.0001 

Contr ibuting_Cause_x 3 1 0.5698 0.2340 5.9290 0.0149 

Contr ibuting_Cause_x 2 1 0.6256 0.2158 8.4064 0.0037 

At_Fault_dr iver_x   1 -0.8076 0.0996 65.7982 <.0001 

Ejected_x   1 1.3724 0.1696 65.4804 <.0001 

Vehicle_Maneuver_x 4 1 0.2137 0.1512 1.9976 0.1576 

Vehicle_Maneuver_x 3 1 -0.8341 0.1992 17.5245 <.0001 

Vehicle_Maneuver_x 2 1 0.4623 0.3331 1.9261 0.1652 

ADT_PER_LANE   1 -0.0904 0.0152 35.1822 <.0001 
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Injury Severity Regression Model 
(for Driver Involvements in Fixed Object Crashes at Signalized Intersections) 

 

Parameter   DF Estimate 
Standard 

Error 
Wald chi-

square 
Pr > chi-

square 
Intercept   1 -2.2217 0.2150 106.7891 <.0001 

Speeding_x 2 1 0.9660 0.3557 7.3744 0.0066 
Speeding_x 1 1 -0.1802 0.2918 0.3815 0.5368 

point_impact_x   1 1.0473 0.3135 11.1600 0.0008 
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Injury Severity Regression Model 
(for Driver Involvements in Fixed Object Crashes at Unsignalized Intersections) 

 

Parameter   DF Estimate 
Standard 

Error 
Wald chi-

square 
Pr > chi-

square 
Intercept   1 -1.3481 0.3765 12.8212 0.0003 

dr iver_ageg_group_x 4 1 1.2549 0.4199 8.9321 0.0028 

dr iver_ageg_group_x 3 1 0.0612 0.3575 0.0293 0.8641 

dr iver_ageg_group_x 2 1 -0.2267 0.3831 0.3501 0.5541 

gender_x   1 -0.7600 0.2781 7.4669 0.0063 

Safety_Equipment_x 1 1 -0.9700 0.3077 9.9399 0.0016 

Speeding_x 2 1 -0.2839 0.4756 0.3562 0.5507 

Speeding_x 1 1 -1.0386 0.3256 10.1768 0.0014 

Ejected_x   1 1.7415 0.4909 12.5855 0.0004 

Off_Roadway   1 0.5897 0.2694 4.7926 0.0286 

roadway_curve   1 0.9650 0.4188 5.3101 0.0212 
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Injury Severity Regression Model 
(for Driver Involvements in Fixed Object Crashes at Unsignalized Intersections and Road Segments) 

 

Parameter   DF Estimate 
Standard 

Error 
Wald chi-

square 
Pr > chi-

square 
Intercept   1 -0.5106 0.2271 5.0567 0.0245 

dr iver_ageg_group_x 4 1 0.4100 0.1894 4.6882 0.0304 

dr iver_ageg_group_x 3 1 -0.1661 0.1250 1.7645 0.1841 

dr iver_ageg_group_x 2 1 -0.3107 0.1413 4.8382 0.0278 

gender_x   1 -0.2148 0.1061 4.0985 0.0429 

Safety_Equipment_x 1 1 -0.9985 0.1069 87.2398 <.0001 

Speeding_x 2 1 0.0596 0.1593 0.1400 0.7083 

Speeding_x 1 1 -0.6351 0.1216 27.3001 <.0001 

Contr ibuting_Cause_x 4 1 0.9551 0.1449 43.4477 <.0001 

Contr ibuting_Cause_x 3 1 0.8290 0.2534 10.7035 0.0011 

Contr ibuting_Cause_x 2 1 0.7178 0.2355 9.2853 0.0023 

At_Fault_dr iver_x   1 -0.7611 0.1081 49.5541 <.0001 

Ejected_x   1 2.5266 0.4413 32.7783 <.0001 

gender_x*Ejected_x   1 -1.3333 0.4783 7.7692 0.0053 

Vehicle_Maneuver_x 4 1 0.2261 0.1623 1.9417 0.1635 

Vehicle_Maneuver_x 3 1 -1.0755 0.2713 15.7155 <.0001 

Vehicle_Maneuver_x 2 1 0.2499 0.4788 0.2724 0.6017 

nrural_urban   1 -0.3416 0.1018 11.2468 0.0008 

roadway_curve   1 0.4823 0.1390 12.0386 0.0005 

nType_of_Shoulder  3 1 0.0894 0.1195 0.5605 0.4541 

nType_of_Shoulder  2 1 -0.2208 0.1351 2.6704 0.1022 
ADT_PER_LANE   1 -0.0958 0.0172 31.1202 <.0001 
LIGHTCDE Y 1 0.4991 0.1796 7.7260 0.0054 

LIGHTCDE P 1 0.0464 0.1771 0.0687 0.7933 
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Injury Severity Regression Model 
(for Driver Involvements in Fixed Object Crashes at Road Segments) 

 

Parameter   DF Estimate 
Standard 

Error 
Wald chi-

square 
Pr > chi-

square 
Intercept   1 -1.1679 0.4021 8.4356 0.0037 

dr iver_ageg_group_x 4 1 0.1358 0.2136 0.4041 0.525 

dr iver_ageg_group_x 3 1 -0.2216 0.1336 2.7516 0.0972 

dr iver_ageg_group_x 2 1 -0.3585 0.1520 5.5616 0.0184 

Safety_Equipment_x 1 1 -0.9725 0.1134 73.5886 <.0001 

Speeding_x 2 1 0.0983 0.1695 0.3368 0.5617 

Speeding_x 1 1 -0.5293 0.1303 16.5059 <.0001 

Contr ibuting_Cause_x 4 1 0.7839 0.1889 17.2224 <.0001 

Contr ibuting_Cause_x 3 1 0.6254 0.2932 4.5506 0.0329 

Contr ibuting_Cause_x 2 1 0.6612 0.2681 6.0820 0.0137 

At_Fault_dr iver_x   1 -0.8135 0.1149 50.0888 <.0001 

Ejected_x   1 1.4156 0.1992 50.5008 <.0001 
Vehicle_Maneuver_x 4 1 0.3220 0.1666 3.7382 0.0532 
Vehicle_Maneuver_x 3 1 -0.8227 0.3393 5.8803 0.0153 

Vehicle_Maneuver_x 2 1 0.3856 0.5500 0.4916 0.4832 

Pr ivate_vehicle_use_   1 0.8087 0.3275 6.0969 0.0135 
nrural_urban   1 -0.3011 0.1091 7.6188 0.0058 
Multivehicle 1 1 -0.4074 0.1760 5.3587 0.0206 

roadway_curve   1 0.3927 0.1470 7.1369 0.0076 

nType_of_Shoulder  3 1 0.1265 0.1279 0.9777 0.3228 

nType_of_Shoulder  2 1 -0.1971 0.1427 1.9071 0.1673 
ADT_PER_LANE   1 -0.1005 0.0183 30.0577 <.0001 
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APPENDIX F:  INJURY SEVERITY MODELS’ FINAL ANALYSIS – 
MODELS BY LAND USE 
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Injury Severity Regression Model 
(for Driver Involvements Rural Area Crashes) 

 

Parameter   DF Estimate 
Standard 

Error 
Wald chi-

square 
Pr > chi-

square 
Intercept   1 -0.5043 0.1603 9.8998 0.0017 

Driver_Ageg_Group_x 5 1 0.6002 0.0996 36.3505 <.0001 

Driver_Ageg_Group_x 4 1 0.3451 0.0634 29.6521 <.0001 

Driver_Ageg_Group_x 3 1 -0.2329 0.0565 17.0009 <.0001 

Driver_Ageg_Group_x 2 1 -0.2731 0.0625 19.1198 <.0001 

Ejected_x   1 1.5241 0.0971 246.5351 <.0001 

Speeding_x 2 1 -0.2914 0.1683 2.9983 0.0834 

Speeding_x 1 1 -0.7995 0.1132 49.9050 <.0001 

Gender_x   1 0.2283 0.0862 7.0192 0.0081 

Safety_Equipment_x 1 1 -1.3298 0.0617 464.2625 <.0001 

Gender_x*Safety_Equi 1 1 0.2284 0.0957 5.6989 0.017 

At_Fault_driver_x   1 -0.6136 0.0519 139.7425 <.0001 

Physical_Defects_x   1 0.3742 0.0991 14.2670 0.0002 

Harmful_Event_Group_ 7 1 0.1112 0.0598 3.4585 0.0629 

Harmful_Event_Group_ 6 1 0.4262 0.0939 20.6108 <.0001 

Harmful_Event_Group_ 5 1 -0.3808 0.1298 8.6110 0.0033 

Harmful_Event_Group_ 4 1 0.7102 0.0819 75.2792 <.0001 

Harmful_Event_Group_ 3 1 0.5817 0.0630 85.1846 <.0001 

Harmful_Event_Group_ 2 1 1.1362 0.1184 92.0334 <.0001 

Contributing_Cause_x 4 1 0.4955 0.0545 82.5279 <.0001 

Contributing_Cause_x 3 1 0.5854 0.1474 15.7788 <.0001 

Contributing_Cause_x 2 1 0.4755 0.0677 49.2807 <.0001 

Type_of_Vehicle_x 5 1 -0.2969 0.1881 2.4910 0.1145 

Type_of_Vehicle_x 4 1 -0.2579 0.1097 5.5226 0.0188 

Type_of_Vehicle_x 3 1 -1.1844 0.1463 65.5539 <.0001 

Type_of_Vehicle_x 2 1 -0.1949 0.0458 18.0773 <.0001 

point_impact_x   1 0.0347 0.0958 0.1308 0.7176 

point_imp*Speeding_x 2 1 0.2205 0.1932 1.3020 0.2538 

point_imp*Speeding_x 1 1 0.3656 0.1186 9.5046 0.002 

Off_Roadway   1 -0.5274 0.1020 26.7339 <.0001 

Off_Roadw*Speeding_x 2 1 -0.1372 0.1767 0.6031 0.4374 

Off_Roadw*Speeding_x 1 1 0.2004 0.1210 2.7426 0.0977 

Off_Roadw*Multivehic 1 1 0.7159 0.1543 21.5374 <.0001 

nWork_Area_x 3 1 -0.2917 0.1364 4.5752 0.0324 
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Parameter   DF Estimate 
Standard 

Error 
Wald chi-

square 
Pr > chi-

square 
nWork_Area_x 2 1 -0.2998 0.1208 6.1603 0.0131 

Multivehicle 1 1 -0.7436 0.1377 29.1570 <.0001 

Intersect*Multivehic 1 1 0.1941 0.0493 15.4788 <.0001 

Speed_limit_x 1 1 -0.4105 0.0456 80.9731 <.0001 

ADT_PER_LANE   1 -0.0290 0.00773 14.0392 0.0002 

nAVGTFACT   1 0.00950 0.00376 6.3914 0.0115 

Traffic_Control 3 1 0.1195 0.0649 3.3901 0.0656 

Traffic_Control 2 1 -0.0325 0.0508 0.4098 0.522 

Access_class1 9 1 0.0869 0.0496 3.0770 0.0794 

Access_class1 7 1 0.1101 0.1091 1.0187 0.3128 

Access_class1 6 1 -0.0360 0.0883 0.1666 0.6832 

Access_class1 5 1 -0.0904 0.0518 3.0405 0.0812 

nType_of_Shoulder 3 1 -0.0203 0.0535 0.1443 0.7041 

nType_of_Shoulder 2 1 -0.1203 0.0475 6.4130 0.0113 

Lane_width 4 1 -0.1214 0.0691 3.0892 0.0788 

Lane_width 3 1 -0.3965 0.1497 7.0152 0.0081 

Lane_width 2 1 -0.2186 0.0800 7.4690 0.0063 

roadway_curve   1 0.1786 0.0798 5.0155 0.0251 

Sidewalk_width_group 3 1 -0.3018 0.0626 23.2094 <.0001 

Sidewalk_width_group 2 1 -0.2264 0.0513 19.4807 <.0001 

LIGHTCDE Y 1 -0.1070 0.0872 1.5061 0.2197 

LIGHTCDE P 1 -0.3193 0.0724 19.4568 <.0001 

Skid_Resistance   1 0.1636 0.0420 15.1452 <.0001 

Day_of_Week   1 -0.1028 0.0427 5.8031 0.016 
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Injury Severity Regression Model 
(for Driver Involvements Urban Area Crashes) 

 

Parameter   DF Estimate 
Standard 

Error 
Wald chi-

square 
Pr > chi-

square 
Intercept   1 -1.5993 0.2344 46.5348 <.0001 

Driver_Ageg_Group_x 5 1 0.3323 0.1231 7.2812 0.007 

Driver_Ageg_Group_x 4 1 0.3623 0.0737 24.1588 <.0001 

Driver_Ageg_Group_x 3 1 -0.2811 0.0645 19.0094 <.0001 

Driver_Ageg_Group_x 2 1 -0.2467 0.0720 11.7458 0.0006 

Ejected_x   1 1.3682 0.1010 183.4125 <.0001 

Speeding_x 2 1 0.0365 0.1749 0.0435 0.8348 

Speeding_x 1 1 -1.0925 0.1591 47.1420 <.0001 

Gender_x   1 0.1738 0.0946 3.3762 0.0661 

Safety_Equipment_x 1 1 -1.0277 0.0714 207.0976 <.0001 

Gender_x*Safety_Equi 1 1 0.1953 0.1061 3.3886 0.0656 

At_Fault_driver_x   1 -0.6477 0.0586 122.1641 <.0001 

Residence_Code_x   1 0.2681 0.1144 5.4929 0.0191 

Physical_Defects_x   1 0.4966 0.1127 19.4027 <.0001 

Harmful_Event_Group_ 7 1 0.0623 0.0646 0.9286 0.3352 

Harmful_Event_Group_ 6 1 0.8647 0.1070 65.3435 <.0001 

Harmful_Event_Group_ 5 1 -0.1242 0.1254 0.9806 0.3221 

Harmful_Event_Group_ 4 1 0.9320 0.0876 113.3232 <.0001 

Harmful_Event_Group_ 3 1 0.5885 0.0704 69.8856 <.0001 

Harmful_Event_Group_ 2 1 1.0135 0.1209 70.2737 <.0001 

Contributing_Cause_x 4 1 0.4344 0.0590 54.1346 <.0001 

Contributing_Cause_x 3 1 0.5039 0.1706 8.7235 0.0031 

Contributing_Cause_x 2 1 0.4626 0.0733 39.7874 <.0001 

Type_of_Vehicle_x 5 1 -0.2312 0.2023 1.3061 0.2531 

Type_of_Vehicle_x 4 1 0.4216 0.1144 13.5778 0.0002 

Type_of_Vehicle_x 3 1 -0.7868 0.1774 19.6681 <.0001 

Type_of_Vehicle_x 2 1 -0.1978 0.0546 13.1418 0.0003 

point_impact_x   1 0.1569 0.1118 1.9695 0.1605 

point_imp*Speeding_x 2 1 0.1902 0.1913 0.9887 0.32 

point_imp*Speeding_x 1 1 0.3291 0.1353 5.9144 0.015 

Off_Roadway   1 -0.4003 0.1308 9.3661 0.0022 

Off_Roadw*Speeding_x 2 1 -0.3837 0.1848 4.3133 0.0378 

Off_Roadw*Speeding_x 1 1 0.4144 0.1663 6.2050 0.0127 

Off_Roadw*Multivehic 1 1 0.6326 0.1897 11.1170 0.0009 
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Parameter   DF Estimate 
Standard 

Error 
Wald chi-

square 
Pr > chi-

square 
nWork_Area_x 3 1 -0.00298 0.1590 0.0004 0.985 

nWork_Area_x 2 1 -0.2582 0.1311 3.8816 0.0488 

Multivehicle 1 1 -0.6568 0.1763 13.8756 0.0002 

Intersect*Multivehic 1 1 0.5522 0.1456 14.3812 0.0001 

Speed_limit_x 1 1 -0.3547 0.0570 38.7016 <.0001 

ADT_PER_LANE   1 -0.0243 0.00877 7.7165 0.0055 

nAVGTFACT   1 0.0133 0.00619 4.5806 0.0323 

LIGHTING Y 1 0.2939 0.1335 4.8449 0.0277 

LIGHTING P 1 1.1878 0.4612 6.6322 0.01 

Access_class1 9 1 -0.00889 0.0779 0.0130 0.9092 

Access_class1 7 1 -0.4196 0.0944 19.7714 <.0001 

Access_class1 6 1 -0.2424 0.0797 9.2445 0.0024 

Access_class1 5 1 -0.1416 0.0556 6.4838 0.0109 

nType_of_Shoulder 3 1 0.2251 0.0539 17.4334 <.0001 

nType_of_Shoulder 2 1 0.1165 0.0680 2.9373 0.0866 

Lane_width 4 1 -0.2144 0.0710 9.1189 0.0025 

Lane_width 3 1 -0.1445 0.0816 3.1337 0.0767 

Lane_width 2 1 -0.1581 0.0749 4.4504 0.0349 

roadway_curve   1 0.4289 0.1083 15.6718 <.0001 

LIGHTCDE Y 1 0.2658 0.0703 14.2873 0.0002 

LIGHTCDE P 1 -0.0534 0.0713 0.5596 0.4544 

Type_Friction_Course 9 1 -0.2195 0.0556 15.5798 <.0001 

Type_Friction_Course 5 1 -0.2163 0.1342 2.5984 0.107 

Type_Friction_Course 4 1 -0.2435 0.0617 15.5718 <.0001 

Type_Friction_Course 1 1 -0.4768 0.0950 25.2035 <.0001 

Intersection   1 -0.4626 0.1375 11.3234 0.0008 

Skid_Resistance   1 0.1188 0.0468 6.4412 0.0112 

Day_of_Week   1 -0.0959 0.0483 3.9334 0.0473 
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